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Abstract

In this paper we present a semi-automated
search procedure to deal with the problem
of the identification of the causal structure
related to a vector autoregressive model. The
structural form of the model is described by
a directed graph and from the analysis of the
partial correlations of the residuals the set of
acceptable causal structures is derived.

1 INTRODUCTION

Vector autoregressive (VAR) models are a family of
multiequation time-series models in which all variables
are treated symmetrically, without dichotomizing the
variables into “endogenous” and “exogenous”. They
were introduced into econometrics by Sims (1980), who
demonstrated that VAR models provide a flexible and
tractable framework for analyzing and summarizing
the statistical properties of economic time-series. An
identification problem is encountered when one wants
to do structural inference or policy analysis. Basically,
this problem corresponds to the problem of differenti-
ating between causation and correlation (see Stock and
Watson (2001)). In this paper we propose a graph-
based search procedure to address this problem.

A zero-mean stationary VAR model can be written as:

Yt = A1Yt−1 + . . .+ApYt−p + ut, (1)

where Yt = (y1t, y2t, . . . , ykt)
′, ut = (u1t, u2t, . . . , ukt)

′,
and A1, . . . Ap are (k × k) matrices. The components
of ut are white noise innovation terms, E(ut) = 0
and ut and us are independent for s 6= t. The ma-
trix Σu = E(utu

′
t) is in general nondiagonal. The

relations among the contemporaneous components of
Yt, instead of appearing in the functional form (as in
simultaneous equation models), are embedded in the
covariance matrix of the innovations. From the es-
timation of equation (1), which is straightforwardly

obtained by OLS, one does not get, in general, the
structural relations among the variables, because nu-
merous structures are compatible with a particular set
of statistical associations. It is useful to assume (with-
out loosing generality as to the family of linear models)
that the data are generated by a structural equation
of the form:

ΓYt = B1Yt−1 + . . . BpYt−p + Cvt, (2)

where vt is a (k × 1) vector of serially uncorrelated
structural disturbances with a mean of zero and a di-
agonal covariance matrix Σv .

The identification problem consists in finding a way
to infer the unobserved parameters in (2) from the
estimated form (1), where Ai = Γ−1Bi for i = 1, . . . , p
and ut = Γ−1Cvt. The problem is that at most k(k +
1)/2 unique, non-zero elements can be obtained from
Σ̂u. On the other hand, there are k(k+ 1) parameters
in Γ and Σv and k2 parameters to be identified in C.
Even if it is assumed C = I and the diagonal elements
of Γ are normalized to 1, as it is typically done in the
literature, at least k(k− 1)/2 restrictions are required
to satisfy the order condition for identification.

In order to address this problem, we associated a graph
with the causal structure of the model and the prop-
erties of a given causal structure are obtained by an-
alyzing the properties of the graph. Many ideas of
this paper have been inspired by the method discussed
in Swanson and Granger (1997). Related works are
also Glymour and Spirtes (1988), Dahlhaus and Eich-
ler (2000), Reale and Tunnicliffe Wilson (2001), Demi-
ralp and Hoover (2003), and Haigh and Bessler (2004).
This paper makes the following advances over the pre-
vious studies.

First, our work, like the mentioned papers, bases the
search procedure upon tests of vanishing partial corre-
lations among residuals. However, instead of treating
the estimated residuals as if they were measured, our
tests are based on the asymptotic distribution of the
estimated residuals. This method raises the power of



the tests, as some simulations have shown (see Moneta
(2004)).

Second, we give a proof (Proposition 1) about the links
between partial correlations among residuals and par-
tial correlations among autoregressive variables in a
VAR model. This proof, which we do not find in the
previous studies, justifies rigorously the search proce-
dure of deriving the contemporaneous causal structure
from the vanishing partial correlation among residuals.

Third, we consider also the case of VAR models in
which cycles and common shocks among contempora-
neous variables are allowed.

The rest of the paper is organized as follows. The next
section shows how the structural equation can be rep-
resented by a causal graph. The subsequent sections
develop the search procedure. Two sections are prelim-
inary: section 3 proofs a result about the link between
partial correlations among residuals and partial cor-
relations among contemporaneous variables, section 4
provides the testing procedure of vanishing partial cor-
relation among residuals. Section 5 presents the search
procedure for DAG models, which is extended to the
feedback case in section 6. Section 7 extends the search
to causal relations among lagged variables. Section 8
summarizes the search procedure.

2 CAUSAL GRAPH FOR THE
STRUCTURAL MODEL

Let us suppose that a (k × 1) vector of time-series
Yt = (y1t, . . . , ykt)

′ is governed by a structural model:

Yt =

p∑

i=0

BiYt−i + Cvt, (3)

where the vector of the “structural disturbances” vt =
(v1t, . . . , vkt)

′ is serially uncorrelated and E(vtv
′
t) =

Σv is a diagonal matrix. The Bi’s (i = 0, . . . , p) are
(k × k) matrices. It is assumed that the equation (3)
represents a causal structure which has generated the
data. Such a causal structure can be represented by a
directed graph, as can any linear structural equation
model (see Spirtes et al. (2000) and Richardson and
Spirtes (1999)). If we assume the presence only direct
causal relationships (without feedbacks), the model
can be represented by a directed acyclic graph (DAG).
If we allow feedbacks (among contemporaneous vari-
ables: temporal backward causation is generally ex-
cluded) we deal with directed cyclic graphs. We il-
lustrate our search procedure starting with the DAG
model case. In section 6 we show how it can be ex-
tended allowing feedbacks and common shocks.

In Figure 1 an example of a DAG for the model of
equation (3) is displayed. In this particular example

p = 1, B0 and B1 are lower-triangular matrices and C
is diagonal.

Figure 1: Example of causal DAG for equation (3).
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There is a correspondence between each nonzero entry
of the matrices B0, . . . , Bp, C in equation (3) on the
one hand, and each directed edge in the DAG repre-
senting it on the other hand. In this DAG there is
a directed edge pointing from yi,t−n to yj,t−m (where
0 ≤ i, j,≤ k) if and only if either:

(i) 0 < n−m ≤ p and the entry corresponding to the
jth row and the ith column of B(n−m) is different
from zero; or

(ii) n = m, i 6= j (we rule out self loops) and the entry
corresponding to the jth row and the ith column
of B0 is different from zero.

There is a directed edge pointing from vi,t to yj,t+h if
and only if h = 0 and the entry corresponding to the
jth row and the ith column of C is different from zero.
There is no directed edge pointing from yi,t to vj,t+h
for any i, j and h. There is no directed edge pointing
from vi,t to vj,t+h for any i, j and h.

Notice that since it is assumed that the causal struc-
ture is representable by means of a DAG, feedback
loops are excluded. This is the same as assuming that
if the (i, j) entry of B0 is different from zero, then the
(j, i) entry of B0 must be equal to zero. The extension
to graphs in which undirected edges between contem-
poraneous variables are allowed (while edges between
lagged variables remain directed) is addressed in Sec-
tion 6.

We assume that C = Ik , so that the relations among
the contemporaneous components of Yt are embedded
only in the matrix B0. In Section 6 we generalize by
allowing C 6= Ik , and adapt the algorithm given in this
section to a more complex pattern. However, assuming
C = Ik does not impede a structural shock vi,t to affect
simultaneously components of Yt besides yi,t. This
assumption means only that, for example, vi,t affects



yj,t through the effect of yi,t on yj,t and not directly. In
many contexts the two situations are observationally
equivalent.

The method proposed here is consistent with the
Structural VAR approach (see e.g. Bernanke (1986)).
First, we need to estimate the reduced form:

Yt =

p∑

i=1

AiYt−i + ut, (4)

where Ai = (I −B0)−1Bi, for i = 1, . . . , p. The vector
ut = (I − B0)−1vt is a serially uncorrelated vector of
disturbances. It holds that:

ut = B0ut + vt (5)

Second, from the estimate of the covariance matrix
of ut (Σ̂u), we want to test all the possible vanishing
partial correlations among the elements of ut. Finally,
such tests are used to constrain the possible causal
relationships among the contemporaneous variables.
The next sections illustrate this procedure. For conve-
nience, we assume the vector of the error terms ut to be
normally distributed. However, the testing and search
procedure can be extended to non-Gaussian processes
(see footnote 2).

3 PARTIAL CORRELATIONS
AMONG RESIDUALS

We want to show that partial correlations among
the residuals ut in (4) are tied to partial correlations
among the contemporaneous components of Yt.

Proposition 1. Let u1t, . . . , ukt be the residuals of
k OLS regressions of y1t, . . . , ykt on the same vector
Jt−1 = (y1(t−1), . . . , yk(t−1), . . . , y1(t−p), . . . , yk(t−p)).
Let uit and ujt (i 6= j) be any two distinct elements
of {u1t, . . . , ukt}, Ut any subset of {u1t, . . . , ukt}
\ {uit, ujt} and Yt the corresponding subset of
{y1t, . . . , ykt} \ {yit, yjt}, so that ugt is in Ut iff ygt is
in Yt, for g = 1, . . . , k. Then it holds that:

ρ(uit, ujt|Ut) = ρ(yit, yjt|Yt, Jt−1).

Proof of Proposition 1. See Appendix.

To test vanishing partial correlations among residuals
we apply a procedure illustrated in the next section.

If we consider only multivariate normal distributions,
vanishing partial correlations and conditional inde-
pendence relationships are equivalent. Therefore, if
we consider a DAG with a set of vertices X =

{X1, . . . , Xn} and a normal probability distribution
P (X), that jointly satisfy Markov and Faithfulness
condition1, it holds that: ρ(Xi, Xj |X(h)) = 0 if and
only if Xi is independent from Xj given X(h) if and
only if Xi and Xj are d-separated by X (h), where X(h)

is any subset of X\{Xi, Xj} and i 6= j.2

4 TEST OF VANISHING PARTIAL
CORRELATIONS AMONG
RESIDUALS

In this section we provide a procedure to test the
null hypotheses of vanishing correlations and vanish-
ing partial correlations among the residuals. Tests are
based on asymptotic results.

Let us write the VAR we are estimating in a more com-
pact form, denotingX ′t = [Y ′t−1, Y

′
t−2, ... , Y

′
t−p, which

has dimension (1 × kp) and Π′ = [A1, A2, . . . , Ap],
which has dimension (k × kp). We can write: Yt =
Π′Xt + ut. The maximum likelihood estimate of Π
turns out to be given by

Π̂′ =

[
T∑

t=1

YtX
′
t

] [
T∑

t=1

XtX
′
t

]−1

.

Moreover, the ith row of Π̂′ is

π̂′i =

[
T∑

t=1

yitX
′
t

][
T∑

t=1

XtX
′
t

]−1

,

which coincides with the estimated coefficient vector
from an OLS regression of yit on Xt (Hamilton (1994),
p. 293). The maximum likelihood estimate of the ma-
trix of variance and covariance among the error terms
Σu turns out to be Σ̂u = (1/T )

∑T
t=1 ûtû

′
t, where

1The Markov condition and the Faithfulness condition
are conditions on the probability distribution P of a set of
variables V and the DAG that associates a vertex to every
element of V . The assumption that these two conditions
are satisfied bases the causal search algorithms developed
by Spirtes et al. (2000). The Markov condition says that
any vertex in a DAG G is conditionally independent of its
nondescendants (excluding its parents), given its parents,
under P . The Faithfulness condition states the following.
Let G be a causal graph with vertex set V and P be a
probability distribution over the vertices in V such that
G and P satisfy the Markov condition. G and P satisfy
the Faithfulness condition if and only if every conditional
independence relation true in P is entailed by the Markov
condition applied to G. (See Spirtes et al. (2000), pp. 29-
31).

2However, some results of Spirtes et al. (2000, p. 47)
show that assuming the Faithfulness condition for linear
systems is equivalent to assume that in a graph G the ver-
tices A and B are d-separated given a subset C of the
vertices of G if and only if corr(A,B|C) = 0, without any
normality assumption.



ût = Yt − Π̂′Xt. Therefore the maximum likelihood
estimate of the covariance between uit and ujt is given

by the (i, j) element of Σ̂u: σ̂ij = (1/T )
∑T
t=1 ûitûjt.

Proposition 2 (Hamilton 1994, p. 301).
Let Yt = A1Yt−1 + A2Yt−2 + . . . + ApYt−p + ut
where ut ∼ i.i.d. N(0,Σu) and where roots of
|Ik −A1z−A2z

2− . . .−Apzp| = 0 lie outside the unit

circle. Let Σ̂u be the maximum likelihood estimate of
Σu. Then

√
T [vech(Σ̂u)− vech(Σu)]

d−→ N(0, Ω), (6)

where Ω = 2D+
k (Σu ⊗ Σu)(D+

k )′, D+′

k ≡
(D′kDk)−1D′k and Dk is the duplication matrix.

Therefore, to test the null hypothesis that ρ(uit, ujt) =
0, we use the Wald statistic:

T (σ̂ij)
2

σ̂iiσ̂jj + σ̂2
ij

≈ χ2(1).

The Wald statistic for testing vanishing partial corre-
lations is obtained by means of the delta method (see
e.g. Lehmann and Casella (1998), p. 61).

For example, for k = 4, suppose we want to test
ρ(u1, u3|u2) = 0. First, notice that ρ(u1, u3|u2) = 0
if and only if σ22σ13 − σ12σ23 = 0, where σij is
the (i, j) element of Σu. Let us define a function
g : Rk(k+1)/2 → R, such that g(vech(Σu)) = σ22σ13 −
σ12σ23. Thus,

∇g′ = (0, −σ23, σ22, 0, σ13, −σ12, 0, 0, 0, 0).

The delta method implies that:
√
T [(σ̂22σ̂13 − σ̂12σ̂23) − (σ22σ13 − σ12σ23)]

d−→
N(0,∇g′Ω∇g).

The Wald test of the null hypothesis ρ(u1, u3|u2) = 0
is given by:

T (σ̂22σ̂13 − σ̂12σ̂23)2

∇g′Ω∇g ≈ χ2(1).

Tests for higher order correlations follow analogously.

5 SEARCHING FOR THE CAUSAL
GRAPH AMONG
CONTEMPORANEOUS
VARIABLES

In this section an algorithm to identify the causal
graph among the contemporaneous variables is pre-
sented. In real applications the output of the algo-
rithm is an unique DAG only in very special cases

(usually when some background knowledge is incorpo-
rated, besides the d-separation relations). In most of
the cases, the algorithm just allows us to narrow sig-
nificantly the set of possible DAGs and we obtain, as
output, a pattern of DAGs. Therefore, further a priori
knowledge is necessary to select the appropriate DAG
from this pattern.

Proposition 1 implies that testing a vanishing partial
correlation coefficient between uit and ujt given some
other components uqt, . . . , upt is equivalent to testing
a vanishing partial correlation coefficient between
yit and yjt given some other components yqt, . . . , ypt
and Jt−1. Therefore, from tests on all the possible
partial correlations among the components of ut we
can obtain d-separation relations for the graphical
causal model representing the structural equation (3).
The next proposition proves that the d-separation
relations that we obtain correspond to all the possible
d-separation relations among the contemporaneous
variables for the graph induced on the contemporane-
ous variables y1t, . . . , ykt alone.

Proposition 3. Let us call G the causal DAG
representing equation (3) and GYt the subgraph of
G induced on y1t, . . . , ykt. Let Jt−1 and Yt be the
same as in Proposition 1. yit and yjt are d-separated
by Yt and Jt−1 in G, if and only if yit and yjt are
d-separated by Yt in GYt .

Proof of Proposition 3. See Appendix.

The next proposition shows that d-connection (d-
separation) relations entail some restrictions on the
graph in terms of adjacencies among the vertices and
directions of the edges. The goal is to justify the
procedures given by the search algorithm below.

Proposition 4. GYt is defined as in Proposition
3. Let us assume P (X) to be a probability distribu-
tion over the variables X that form GYt , such that
< GYt , P (X) > satisfies the Markov and Faithfulness
conditions. Then:

(i) for all distinct vertices yit and yjt of GYt , yit and
yjt are adjacent in G if and only if yit and yjt
are d-connected in GYt conditional on every set of
vertices of GYt that does not include yit and yjt;
and

(ii) for all vertices yht, yit and yjt such that yht is ad-
jacent to yit and yit is adjacent to yjt, but yht and
yjt are not adjacent, yht −→ yit ←− yjt is a sub-
graph of GYt if and only if yht, yjt are d-connected
in GYt conditional on every set of vertices of GYt
containing yit but not yht or yjt.



Proof of Proposition 4. This proposition is a
particular case of a theorem proved in Spirtes et al.
(2000, theorem 3.4, p. 47) and in Verma and Pearl
(1990).

The goal of the algorithm described in Table 1
is to obtain a (possibly narrow) class of DAGs, which
contains the causal structure among the contem-
poraneous variables GYt . The algorithm, which is
an adaptation of the PC algorithm of Spirtes et
al. (2000), starts from a complete undirected graph
C among the k components of Yt (in which each
vertex is connected with every other vertex) and
uses d-separation relations to eliminate and direct as
many edges as it is possible. Notice that it would
be equivalent to directly applying the algorithm to
the components of the vector of residuals ut and to
consider vanishing partial correlations among them
as d-separation relations. The graph induced on the
components of ut would be the same as the graph
induced on the components of Yt.

6 FEEDBACKS AND COMMON
SHOCKS

The preceding sections complied with a sometimes use-
ful simplification, namely that the statistical depen-
dencies among the measured variables (which consti-
tute the multivariate time series {Yt}) are due only to
directed causes, ruling out the possibility of feedbacks
or of unmeasured common causes. In this section the
search procedure is extended to consider the possibil-
ity that the data generating process is representable
through a structure in which feedbacks (namely bi-
directed causes) and particular latent variables (com-
mon shocks) are allowed.

Spirtes et al. (2000) develop an algorithm (FCI algo-
rithm), which infers features of the DAGs from a prob-
ability distribution when there may be latent common
causes, while Richardson and Spirtes (1999) develop
an algorithm (CCD algorithm), which infers features
of directed cyclic graphs from a probability distribu-
tion when there are no latent common causes. An
open question is whether there are comparable algo-
rithms for inferring features of directed graphs (cyclic
or acyclic) even when there may be latent common
causes. In fact distinguishing between feedbacks and
latent variables is a difficult task, which the analysis of
vanishing partial correlation alone seems not to solve.

We propose an automatic search procedure that pro-
duces as output an undirected graph. The undirected
edges that form the undirected graph reflect an epis-
temological (more than ontological) reason: we do not
know if the presence of an undirected edge denotes a

Table 1: Search algorithm 1 (adapted from the PC
Algorithm of Spirtes et. al. 2000).

A.)
Form the complete undirected graph C on the vertex
set y1t, . . . , ykt. Let Adjacencies(C, yit) be the set of
vertices adjacent to yit in C and let Sepset (yht, yit)
be any set of vertices S so that yht and yit are
d-separated given S;
B.)
n = 0
repeat :

repeat :
select an ordered pairs of variables
yht and yit that are adjacent in C
such that Adjacencies(C, yht)\{yit}
has cardinality greater than or equal
to n, and a subset S of Adjacen-
cies(C, yht)\{yit} of cardinality n,
and if yht and yit are d-separated
given S in GYt delete edge yht — yit
from C;

until all ordered pairs of adjacent vari-
ables yht and yit such that Adjacen-
cies(C, yht)\{yit} has cardinality greater
than or equal to n and all subsets S of
Adjacencies(C, yht) \{yit} of cardinality n
have been tested for d-separation;
n = n+ 1;

until for each ordered pair of adjacent variables yht,
yit, Adjacencies(C, yht) \{yit} is of cardinality less
than n;
C.)
for each triple of vertices yht, yit, yjt such that the
pair yht, yit and the pair yit, yjt are each adjacent
in C but the pair yht, yjt is not adjacent in C, orient
yht — yit — yjt as yht −→ yit ←− yjt if and only if
yit never belongs to a Sepset(yht, yjt);
D.)
repeat :

if yat −→ ybt, ybt and yct are adjacent, yat
and yct are not adjacent and ybt belongs to
every Sepset(yat, yct), then orient ybt — yct
as ybt −→ yct;
if there is a directed path from yat to ybt,
and an edge between yat and ybt, then orient
yat — ybt as yat −→ ybt;

until no more edges can be oriented.

feedback, a latent variable or a directed cause in the
data generating process. In particular cases, an undi-
rected edge may correspond to no direct connection
at all in the data generating process, as we illustrate



below.

The search algorithm displayed in Table 2 is an adap-
tation of the common first and second part of the PC,
FCI, and CCD algorithm and the PC algorithm. The
algorithm starts from a complete undirected graph
among the contemporaneous variables and just elim-
inates all the edges between two variables which are
d-separated by any other variable.

We leave to background knowledge the criterion to de-
cide whether the undirected edge represents a feed-
back, a latent variable, a direct cause, or actually no
direct connection. However, there is another statisti-
cal check: if the restrictions on the contemporaneous
variables of a VAR model are over-identifying, they
can be tested according to a χ2 statistics.

As we mentioned, the presence of an undirected edge in
the output of the search algorithm proposed here does
not correspond necessarily to the presence of an edge in
the causal graph of the data generating process. For
example, suppose we have four variables X,Y, Z,W ,
and the graph related to the data generating process
is:

X -Y

W
?
6

Z -

Then the output of the search algorithm of Table 2.2.
will be:

X Y

WZ

@
@@�
��

Thus, for instance, the undirected edge between X and
W in the output of the algorithm does not correspond
to an edge in the data generating graph, although X
is d-connected to W by any possible set of vertices.
Analogous results are obtained in the presence of a la-
tent variable, instead of a feedback, between Y and W
in the data generating process. This means that when
we obtain an output of this type, we have to be careful
to consider the possibility of edges corresponding to no
edges in the data generating graph.

Table 2: Search algorithm 2 (adapted from common
steps of PC-FCI-CCD algorithms of Spirtes et al. (2000)
and Richardson and Spirtes (1999)).

A.)
From the estimated covariance matrix of the VAR
residuals test all the possible partial correlations
among the residuals (using the Wald test procedure
described in section 4).
B.)
Form the complete undirected graph C on the vertex
set y1t, . . . , ykt. Let Adjacencies(C, yit) be the set of
vertices adjacent to yit in C and let Sepset (yht, yit)
be any set of vertices S so that yht and yit are
d-separated given S;
C.)
n = 0
repeat :

repeat :
select an ordered pairs of variables
yht and yit that are adjacent in C
such that Adjacencies(C, yht)\{yit}
has cardinality greater than or equal
to n, and a subset S of Adjacen-
cies(C, yht)\{yit} of cardinality n,
and if yht and yit are d-separated
given S in GYt delete edge yht — yit
from C;

until all ordered pairs of adjacent vari-
ables yht and yit such that Adjacen-
cies(C, yht)\{yit} has cardinality greater
than or equal to n and all subsets S of
Adjacencies(C, yht) \{yit} of cardinality n
have been tested for d-separation;
n = n+ 1;

until for each ordered pair of adjacent variables yht,
yit, Adjacencies(C, yht) \{yit} is of cardinality less
than n;

7 STRUCTURAL RELATIONS
AMONG LAGGED VARIABLES

Once structural relations among contemporaneous
variables are obtained, we can use this information to
impose some constraints on structural relations among
different time point realizations of the components of
Yt. Indeed, the graphical model among the contem-
poraneous variables, which we obtain from the algo-
rithms described above, implies zeros in the matrix
(I −B0), derived from equations:

Yt =

p∑

i=1

AiYt−i + ut, (7)



ut = B0ut + vt. (8)

It is also possible to test the zeros in the matrices
A1, . . . , Ap using asymptotic test procedures. Let us
consider the matrices B0, B1, . . . , Bp of the structural
form of the model:

Yt =

p∑

i=0

BiYt−i + vt. (9)

It turns out that Bi = (I − B0) Ai, for i = 1, . . . , p.
From tests on the zeros of the matrices A1, . . . , Ap and
on the zeros of the matrix (I − B0) (entailed by the
causal graph obtained from the search algorithms) one
can derive the zeros of the matrices B1, . . . , Bp. Each
zero in a matrix Bi implies a lack of edge in the causal
graph of the model, according to the rules we set in
the section 2.

8 SUMMARY OF THE
PROCEDURE AND
APPLICATIONS

The search procedure for identifying the graph of the
structural model can be summarized as follows:
Step 1: Estimate a VAR via OLS.
Step 2: Estimate the covariance matrix of the resid-
uals from the reduced form.
Step 3: Test all the possible vanishing partial corre-
lations among the residuals (according to the proce-
dure described in section 4) and list the consequent
d-separation sets among the contemporaneous vari-
ables.3

Step 4: Apply the search algorithms (plus background
knowledge) described in Tables 1 and 2 to such d-
separation sets in order to determine the causal struc-
ture among the contemporaneous variables.
Step 5: Apply the procedure described in section 7 to
determine the structure among the lagged variables.

The natural application of this method is to macroeco-
nomic data, in which VAR models are mainly used to
study the dynamic effect of structural shocks (impulse
response functions analysis), which are given precise
economic interpretation (shock to productivity, mon-
etary policy shock, etc.). In order to get a reliable in-
terpretation of the shocks, one has to find that trans-
formation of the reduced form system of equations,
which is consistent with the causal structure among

3Actually, to apply the algorithm one does not need to
test all the vanishing partial correlations, but just those
requested by the algorithm. However, when we deal with a
VAR model with few variables (as it has to be the case), it
may be useful to have a complete list of the vanishing par-
tial correlations and the corresponding d-separation sets.

the data. Since such transformation consistent in im-
posing a contemporaneous causal structure on the data
(via matrix B0 in equation (3)), this method permits
to choose the most reliable transformations.

Moneta (2003) is an attempt to apply a simple ver-
sion of this method, which only uses search algorithm
1 (ruling out cycles and latent variables), in order
to identify the structural shocks associated with the
following US macroeconomic variables: output, con-
sumption, investment, money, interest rate, and in-
flation. The results point out that not only shocks
associated to real macroeconomic variables (output,
consumption and investment) but also shocks associ-
ated to nominal variables (money, inflation and inter-
est rates) have a considerable effect on macroeconomic
fluctuations (at all frequencies). This result shows how
US data are not consistent with the Real Business Cy-
cle hypothesis, which claims that a single productivity
shock is driving output fluctuations.

The application considered by Moneta (2004) deals
with the problem of finding the most appropriate
measure of the exogenous monetary policy shock in
US economy. The method allows cycles and com-
mon shocks among contemporaneous variables (using
search algorithm 2). Background knowledge about the
central bank operating procedures is used to further
discriminate among the causal structures output of the
algorithm. The results suggest that a good measure of
monetary policy shock is that portion of shock to non-
borrowed reserves orthogonal to shock to total reserve.

APPENDIX
Proofs

Proof of Proposition 1
Let < Ut > be the n-uple of the ordered elements of Ut
and < Yt > the corresponding n-uple of the ordered
elements of Yt. We prove the proposition by induction
on the length of < Ut >.
(i) Base Case: < Ut >= ∅. We want to prove that:
ρ(uit, ujt) = ρ(yit, yjt|Jt−1). We know that:

ρ(yit, yjt|Jt−1) =
cov(yit, yjt|Jt−1)√

var(yit|Jt−1)var(yjt|Jt−1)

Since4 uit = yit − cov(yit, Jt−1)var(Jt−1)−1Jt−1 and
ujt = yjt − cov(yjt, Jt−1)var(Jt−1)−1Jt−1, then
cov(uit, ujt) =
cov(yit − cov(yit, Jt−1)var(Jt−1)−1Jt−1, yjt −
cov(yjt, Jt−1)var(Jt−1)−1Jt−1) =
= cov(yit, yjt)+cov(cov(yit, Jt−1)var(Jt−1)−1Jt−1,
cov(yjt, Jt−1)var(Jt−1)−1Jt−1)−

4If an intercept is added the substance of the proof does
not change.



cov(cov(yit, Jt−1)var(Jt−1)−1Jt−1, yjt)−
cov(yit, cov(yjt, Jt−1)var(Jt−1)−1Jt−1) =
= cov(yit, yjt)+cov(yit, Jt−1)var(Jt−1)−1var(Jt−1)
cov(Jt−1, yjt)var(Jt−1)−1−
cov(yit, Jt−1)var(Jt−1)−1cov(Jt−1, yjt)−
cov(yit, Jt−1)var(Jt−1)−1cov(Jt−1, yjt)=
= cov(yit, yjt)− cov(yit, Jt−1)var(Jt−1)−1

cov(Jt−1, yjt) = = cov(yit, yjt|Jt−1).
In similar way, var(uit) = var(yit|Jt−1) and
var(ujt) = var(yjt|Jt−1). Therefore,

cov(yit,yjt|Jt−1)√
var(yit|Jt−1)var(yjt|Jt−1)

=
cov(uit,ujt)√
var(uit)var(ujt)

=

ρ(uit, ujt).
(ii) Induction Case: suppose the propo-
sition holds for < Ut >= u1t, . . . , unt.
Let us prove it holds for < Ut >=
u1t, . . . , u(n+1)t. ρ(yit, yjt|y1t, . . . , y(n+1)t, Jt−1) =
= [ρ(yit, yjt|y1t, . . . , ynt, Jt−1)−
ρ(yit, y(n+1)t|y1t, . . . , ynt, Jt−1)
ρ(yjt, y(n+1)t|y1t, . . . , ynt, Jt−1)]/

[
√

1− ρ2(yit, y(n+1)t|y1t, . . . , ynt, Jt−1)√
1− ρ2(yjt, y(n+1)t|y1t, . . . , ynt, Jt−1)] =

= [ρ(uit, ujt|u1t, . . . , unt)−
ρ(uit, u(n+1)t|u1t, . . . , unt)
ρ(ujt, u(n+1)t|u1t, . . . , unt)]/

[
√

1− ρ2(uit, u(n+1)t|u1t, . . . , unt)√
1− ρ2(ujt, u(n+1)t|u1t, . . . , unt)] =

= ρ(uit, ujt|u1t, . . . , u(n+1)t).

Proof of Proposition 3
(i) Suppose yit and yjt are d-separated by Jt−1 and
Yt in G. If there is a path in G between yit and yjt
that contains only components of Yt (and possibly of
ut), such path is not active. Then any path in GYt
between yit and yjt is not active. Then yit and yjt are
d-separated by Yt in GYt .
(ii) Suppose yit and yjt are d-separated by Yt in GYt .
Then, if there is an active path between yit and yjt in
G, such path must contain a component of Jt−1 which
is not a collider, since there are no directed edge from
any component of Yt pointing to any component of
Jt−1. Therefore such path is not active relative to
Jt−1 in G and yit and yjt are d-separated by Jt−1 and
Yt in G.
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