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1 Introduction

This paper investigates how the interaction between technological and financial variables

shapes the dynamics of economies populated by heterogeneous agents.

The research on the roles played by finance and technology in determining the ag-

gregate performance of a decentralized economy has a long history in economic analysis.

Schumpeter (1934) was among the first to acknowledge that financial investments were as

important as technical advances for long-run economic growth.

More recently, this argument has been employed to explain the spectacular performance

of U.S. economy in the 90’s on the basis of the widespread diffusion of information and

communication technologies, and the huge financial investments that channelled it (see

Levine, 2005; Aghion, Howitt, and Mayer-Foulkes, 2004; Carlin and Mayer, 2003). For

example, Rossi et al. (2001), in line with the earliest work of Schumpeter, have shown that

investment opportunities triggered by the introduction of new production possibilities are

typically not sufficient to foster aggregate growth in the long-run. The efficiency of the

system in conveying funds toward those opportunities is a crucial factor as well.

Furthermore, on a more short-run scale, diverse strands of research have identified either

in technological shocks or in the dynamics of financial variables the main cause of business

cycles. For instance, the “real business cycle” school (see Stadler, 1994, for a survey) has

popularized the view that exogenous technological shocks to total factor productivity were

responsible for fluctuations of main macroeconomic variables.

Conversely, the “financial accelerator” literature has attempted to account for business

cycles on the grounds of firms’ financial status (Bernanke, Gertler, and Gilchrist, 1996; Kiy-

otaki and Moore, 1997; Greenwald and Stiglitz, 1993). In this view, short-run movements

in the main macroeconomic time-series are induced by shocks affecting balance sheets of

firms and their ability to finance production and investment plans through internal and

external resources.

Albeit providing important insights on how decentralized economies work both in the

long-run and at business cycle frequencies, all contributions discussed so far aim at explain-

ing statistical regularities at a very aggregate level. Any microfoundation of macroeconomic

relations is usually carried over by sticking to the hypothesis of a representative agent fac-

ing an inter-temporal optimization problem. The analysis of cross-sectional properties of

the agents (e.g., their persistent heterogeneity) is almost completely neglected.

Nevertheless, a good deal of resent research in industrial organization has been able to

single out an impressive number of stylised facts concerning the cross-sectional evolution

of firms and productivity. In particular, the micro-dynamics patterns displayed by “real-

world” economies look quite different from the homogeneous one postulated in represen-
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tative agent based models. Indeed, the presence of significant and persistent asymmetries

among firms in terms of investment, output, employment, productivity levels, etc. – over

the different phases of business cycles, as well as at a longer time spans – emerges as a

distinctive feature of modern economies (Davis and Haltiwanger, 1992; Caballero, Engel,

and Haltiwanger, 1995, 1993; Bartelsman and Doms, 2000).

This empirical evidence raises the question whether the foregoing asymmetries, robustly

and persistently emerging at the micro-economic level, matter for the dynamics of the whole

economy. As argued at more length in Dosi and Orsenigo (1994), a large part of existing

macroeconomics literature, including both the “real business cycle” and the “financial

accelerator” traditions, have made few attempts to investigate these micro-macro linkages

(with the notable exception of Ricardo Caballero and his co-authors, see e.g. Caballero,

Engel, and Haltiwanger (1995)).

In this paper, we make a preliminary step in filling this gap. More specifically, we

explore the extent to which persistent heterogeneity in firms’ technology and financial at-

tributes is able robustly to affect the statistical properties of micro- and macro-dynamics.

To this end, we propose an agent-based model where the source of business fluctuations

and long-run growth is rooted in the behaviours of an evolving network of heterogenous

firms. We follow a “bottom-up” approach to microfoundation and we analyze the ability

of the model to jointly reproduce micro and macro empirical evidence. In particular, we

are interested in two sets of stylised facts. First, on the macroeconomic side, we attempt

to replicate some standard time-series properties concerning the coupled dynamics of ag-

gregate output, investment and productivity. Second, on the microeconomic side, we are

interested in the statistical properties of the cross-section distributions for some crucial

firms’ attributes (e.g., growth, productivity, etc.) and their dynamics.

In the model, a key role is played by financial and technological variables. Due to

information asymmetries in capital markets, firms are prevented from raising equity ex-

ternally. These informational imperfections have two major consequences. First, firms

cannot completely diversify out the risks of bankruptcy inherent their actions. Second,

they must resort to credit markets for external financing. The impossibility of washing

away completely default risks leads firms to act in a risk-averse manner when setting their

output investment and technological adoption plans. Firms’ decisions on production levels

and investment will thus be influenced by the level of firm’s net worth, which acts as a

buffer variable toward risk. Technology matters for the evolution of economic variables

as well. Technical improvements are embodied in new machines. Their adoption allows

productivity gains. The latter are affected by technological learning activities and occur

both internally and externally to the single firm. In turn, the dynamics of individual vari-

able costs depends on the gap between firm’s productivity levels and the average variable
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cost prevailing in the market: firms with above-average productivity will have coeteris

paribus lower costs, higher cash-flows, and will be able to bear in better way the risks of

bankruptcy.

As mentioned, our model is well in the spirit of the “Agent-Based Computational Eco-

nomics” approach (see e.g Testfatsion, 1997; Epstein and Axtell, 1996; Fagiolo and Dosi,

2003; Fagiolo, Dosi, and Gabriele, 2004), and heavily builds on Delli Gatti et al. (2005).

Agent-based models have been developed to study the properties of systems characterized

by a large number of heterogeneous interacting units. In these models, microfoundations

are valued as reliable on the grounds of the empirical evidence they can account for, not

necessarily on their coherence with optimizing principles. In line with ACE building blocks,

the structure of our model allows for interactions among firms, both in the form of network

externalities and through direct-price effects. While the former characterize learning activ-

ities performed on new technologies, the latter are embodied in labour and credit market

variables. Together, they concur to determine competition and the ensuing selection of

firms operating in the economy.

Simulation results show that the model is able to generate self-sustaining growth char-

acterized by wide and persistent fluctuations in the time-series of aggregate output, invest-

ment, employment and productivity. Moreover, the statistical properties of the simulated

output-investment dynamics match those empirically observed at business-cycles frequen-

cies. Similarly, we are able to replicate the most important regularities characterizing

technology and employment dynamics. The model is also consistent with the main stylised

fact characterizing the cross-sectional dynamics of productivity, i.e. productivity levels

of firms display a significant and persistent dispersion. Finally, our simulated data can

replicate the most important productivity-growth and productivity-exit relations that we

observe in reality.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3

discusses qualitative and quantitative results of simulation exercises. Section 4 concludes

and presents some future developments.

2 The Model

2.1 The Economy

Consider an economy with a homogenous good in which firms, labeled by the index i =

1, 2, ..., N , undertake decisions at discrete times t = 1, 2, ..., T . In each period production
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is carried out using capital and labour, under a Leontief technology:

Yit = min {Kit, αitLit} , (1)

where Kit and Lit are respectively capital and labour employed, and αit is the productivity

of labour.

The output produced by each firm is fully sold on the market at the price Pit. Therefore,

we exclude the possibility of inventories accumulation. The relative price of firm’s output

is given by:

Pit = Ptuit, (2)

where Pt is the general price level and uit is the relative price for the output of the single

firm. We assume that uit is a random variable, uniformly distributed and independent on

Pt (see also below).

In any period each firm is endowed with a level of real net worth, Ait, which is defined

as the stock of firm’s assets in real terms that has been financed either through net profits

or through equity issues. We assume that information asymmetries in capital markets are

such that firms cannot gather funds through new equity issues. Accordingly, net worth can

grow only through net profits and its dynamics reads:

Ait = Ait−1 + πit−1. (3)

The equity-rationing hypothesis implies that the unique source of external financing is

represented by debt supplied by financial intermediaries, Bit. In any period each firm pays

a real interest rate equal to rit for the funds it borrows. For simplicity, we assume that the

latter is also the return on real net worth. Accordingly, firm’s financing costs are equal to:

rit(Ait + Bit) = ritKit. (4)

Variable costs are borne after production takes place. In addition, we assume that total

variable costs of capital are proportional to financing costs. The equation of net profits in

real terms thus reads:

πit =

(
uit − wt

αit

− ritµit

)
Kit (5)

where wt is the real wage-rate and µit is a variable which takes value µn when replacement

occurs and µo otherwise (with µn > µo and µo > 1).

We give now a brief account of the timing of events occurring in any period. Next, we
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describe in more detail each event separately.

2.2 Dynamics

At the beginning of each period t, the system is completely described by the vectors

containing the state variables of our N firms. Each vector includes time t − 1 levels of

net worth, production, net profits, capital stock, the stock of debt and the technological

variables determining the productivity of the firm, i.e. the vintage of its capital stock and

the skill with which it masters its embodied technology.

In each period firms must take two types of decisions: they must set the level of final

output to be produced and sold, and they must decide whether to replace or not their

capital stock with a new and more productive vintage. The sequence of events occurring

in each period runs as follows:

1. Firms’ net worth are updated: past net profits (positive or negative) are added to

the past level of net worth.

2. The innovation process takes place. New vintages are introduced under an exogenous

stochastic process.

3. The entry-exit process occurs.

4. Firms decide whether to switch or not to the new technology.

5. Labour and credit markets open: the wage-rate and the interest rates on loans are

determined. Firms’ unitary costs are determined.

6. The level of production is set. The corresponding labour and capital demand decisions

are made.

7. Firms’ production and replacement plans are realized.

8. The market for the final good opens. The relative prices for firms’ output are drawn.

9. Firms’ profits are determined.
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2.3 Technological Progress

The introduction of new vintages in the economy follows a Poisson process with exogenous

arrival rate λ > 0. Accordingly, the period of arrival of new capital-embodied technologies,

τ , is drawn from an exponential distribution with mean 1/λ. Whenever an innovation

occurs, the productivity θ increases at an exogenous rate ξ > 0. Therefore:

θ(τ) = θ0(1 + ξ)τ , θ0 > 0. (6)

The actual productivity realized by a firm with a given vintage, α(τ), is the product of

the value given by (6) and the skill with which the firm masters the technology embodied

in that vintage. The latter evolves, in turn, through learning activities, which are both

internal and external to the firm. Let us denote with sit ∈ [0, 1] the internal skill level

achieved by firm i on its operating vintage vit. Internal learning on the technology embodied

in the operating vintage evolves according to a logistic dynamics:

∆sit = β(
CUt−1

CCUt−1

)sit−1(1− sit−1) (7)

where CUt−1 and CCUt−1 are respectively capacity utilization (i.e. the ratio of production

to capital stock) and cumulative capacity utilization realized with the operating vintage1.

The skill reached by each single firm spills over and becomes available to the rest of

the economy. Let us denote with s̄t(τ) the average skill achieved with vintage v(τ). We

assume that in each period the technological externality on a given vintage is proportional

to the average skill:

sp
t (τ) = ωs̄t(τ), with ω > 0 and sp

τ (τ) = η > 0. (8)

Firms get the skill level sp
t (τ) even if they do not currently own the vintage v(τ).

2.4 Entry-Exit

Firms exit the market whenever they go bankrupt, i.e. if their net worth becomes negative.

From (2), (3) and (5), it follows that bankruptcy occurs if the relative price for firm’s output

is such to lead to losses greater than the present level of net worth. We can define this price

level as the “reservation price” for firm i in period t. Formally, it satisfies the following

condition:

1In this fashion, internal skill dynamics acquires the features of the classic power law learning curves,
whose presence has often been reported in the literature on technology diffusion (see Dosi, Silverberg, and
Orsenigo, 1988).
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uit : Ait(uit) ≡ 0. (9)

Bankruptcy is costly for firms. Following Greenwald and Stiglitz (1993), we assume

that bankruptcy costs are monotonically increasing and convex with respect to firm size:

CFit = cY 2
it . (10)

Each exiting firm is replaced by a new entrant firm. Therefore, the number of firms

keeps constant through time. Furthermore, in order to avoid as much as possible biases

to the overall dynamics, we assume that entrant firms are random copies of surviving ones

with respect to levels of net worth, capital stock, production and initial debt. As far as

technology is concerned, we suppose that the technology of any entrant firm is chosen at

random between the most productive available and the one immediately following it.

2.5 Replacement Decisions

Replacement investment leads to an initial loss of production, equal to σitKit, where σit =

σ < 1 if replacement occurs and zero otherwise. These losses can be due, for example, to

the deployment of part of labour force to tasks needed to bring the new vintage to operate

at full productivity.

In deciding whether replacing or not the capital stock Ks
it−1 with a new vintage, each

firm compares the expected rate of profits in the two alternatives2. However, since replace-

ment is costly, it can also raise the risk of bankruptcy, i.e. the probability that the firm’s

output price falls below the threshold ūit. We assume that, when comparing the outcomes

of the two alternatives, firms take into consideration also the expected unitary bankruptcy

costs involved. If we denote respectively with ūit(σ, α(τ), µn, ait) and ūit(0, αit, µ
o, ait) the

reservation prices in case of replacement and no replacement, then from (5) and (10), it

follows that the pay-off of the firm in case of replacement is:

1− σit − w(t)

α(τ)
− rµn − pr {uit ≤ ūit (σit, α(τ), µn, ait)} cKs

it−1 (11)

whereas without replacement is:

1− w(t)

αit

− rµo − pr {uit ≤ ūit (0, αit, µ
o, ait)} cKs

it−1 (12)

2Throughout the paper we assume that the replacement decision has a discrete form: either the firm
replaces all its capital stock or it does not replace at all. In addition, new vintages are effective with one
lag, i.e. once the capital stock has been replaced the new vintage becomes operative only after one period.
Finally, there is no resale market for the scrapped capital stock.
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where pr{·} stands for probability.

A firm will replace its capital stock with a new vintage if the pay-off in that case is

higher, that is whenever:

w(t)

αit

− w(t)

α(τ)
≥ [σ + r (µn − µo)] + ∆prf · cKs

it−1. (13)

The product ∆prf · cKs
it−1 measures the variation in expected bankruptcy risk induced by

replacement, where cKs
it−1 is the cost of bankruptcy and ∆prf is the variation in bankruptcy

risk caused by the decision of adopting a new vintage. More formally:

∆prf = pr {uit ≤ ūit (σ, α(τ), µn, ait)} − pr {uit ≤ ūit (0, αit, µ
o, ait)} . (14)

The rule in (13) simply states that a firm replaces its capital stock whenever savings

on unitary real labour costs allowed by the new vintage (the L.H.S.) are greater or equal

than the unitary costs of replacement (the R.H.S.), which include also a premium for the

variation in bankruptcy risk caused by the replacement decision.

As far as uncertainty about technological parameters in (13) is concerned, we assume

for simplicity that the subjective probability distribution of the relative price uit is the

same for all firms, and equal to the objective probability distribution, with E(uit) = 1.

In addition, we suppose that relative prices are drawn from a uniform distribution with

support (γ, 2 − γ). The foregoing assumptions imply that the expression for the risk

premium term on the R.H.S. of (13), takes the form:

∆prf · cKs
it−1 =

[(
w(t)

α(τ)
+ rµn − ait

)
− (1− σ)

(
w(t)

αit

+ rµo − ait

)]
cKs

it−1

2(1− σ)
. (15)

2.6 Production Decisions

Each firm sets its desired level of production through the maximization of expected net

profits minus expected bankruptcy costs. Formally, the problem of the firm can be stated

in the following terms:

max
Yit

E(πe
it)− pr {uit ≤ ūit (σit, αit, µit, ait)} · CFit. (16)

The definitions of reservation price and net profits (Eqs. (9) and (5)), combined with the

assumptions on the probability distribution of the relative price uit and on the bankruptcy
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costs (Eq. (10)), imply that:

pr {uit ≤ ūit} · CFit =
c

2(1− σit)(1− γ)

[(
w(t)

αit

+ ritµit

)
Y 2

it − AitYit

]
. (17)

Accordingly, the objective function to be maximized takes the form:

[
(1− σit)− wt

αit

− ritµit

]
Yit − c

2(1− σit)(1− γ)

[(
w(t)

αit

+ ritµit

)
Y 2

it − AitYit

]
. (18)

¿From first order conditions, the optimal level of production, Y ∗
it , is given by:

Y ∗
it =

(1− σit)(1− γ)

c


 1− σit(

w(t)
αit

+ ritµit

) − 1


 +

Ait

2
(

w(t)
αit

+ ritµit

) . (19)

Equation (19) simply states that the optimal level of production of firm i in period t is an

increasing function of its expected net profitability (as captured by the mark-up expression

in square brackets), and an increasing function of its financial robustness (as measured by

the net worth Ait).

The assumptions on the technology of the firms (see Eq. (1)), imply that the optimal

level of production Y ∗
it maps into a desired level for the capital stock in period t, Ks

it. More

precisely, we assume that net investment, i.e. additions to firm’s capital stock, occurs

whenever the optimal level of production is greater than the total capacity of the firm, the

latter being measured by firm’s capital stock at the end of the previous period (Ks
it−1).

Conversely, when optimal production is less than firm’s capital stock, net investment is

zero and total capacity is reduced by a constant fraction δ ∈ (0, 1). It follows that the law

of motion for the capital stock of firm i is given by:

Ks
it =

{
Ks

it−1 +
(
Y ∗

it −Ks
it−1

)

(1− δ) Ks
it−1

if

if

Y ∗
it ≥ Ks

it−1

Y ∗
it < Ks

it−1

(20)

2.7 The Labour Market

We study an economy characterized by an infinite supply of labour. Accordingly, output

dynamics is driven by capital accumulation. Labour demand in period t is given by:

Lit =
Kit

αit

. (21)

The wage-bargaining process is not modelled in detail. We simply assume that in any
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period the wage-rate is proportional to the average productivity in the economy:

wt = φαt, φ > 0. (22)

2.8 The Credit Market

To close the model, we suppose that the credit market is composed of financial intermedi-

aries, which take into account the risks of default in setting the clauses of the debt contract

they offer to firms. We assume away the possibility of credit rationing. Therefore, firms

can borrow as many funds as they wish at the interest rate set by the banks. The interest

rate on debt contracts is equal to an exogenous level, r, plus a risk premium, which has

two components: the first accounts for the “financial fragility” of the system, the second

captures the relative riskiness of the single borrowing firm:

rit = r[1 + ρg(a(t)) + (1− ρ)f(amax(t)− ait)], g′(.) < 0, f ′(.) > 0, ρ > 0 (23)

where a(t) is the economy’s average equity ratio (i.e. the ratio of net worth to capital

stock), ait is firm equity ratio, and amax(t) is the highest equity ratio in the economy at

time t.

2.9 A Risk-Based Approach to Replacement and Production De-

cisions: A Discussion

The framework exposed in the foregoing paragraphs aims at describing micro and macro

phenomena on the grounds of the interactions between financial and technological variables.

The effects of these interactions on firms’ exit, competition and growth drive the outcomes

of our model. Here, we briefly discuss these mechanisms before presenting the results of

our analysis.

The economy under study features an inverse relation between firm financial robust-

ness and firm probability of bankruptcy. Firms care about the risk of bankruptcy in every

decision they make. In addition, equity rationing hampers them from washing away com-

pletely that risk. Thus, measures of firm financial robustness (net worth and equity ratio)

enter directly in firm decisions about replacement and production (see respectively (13)

and (16)).

By assumption, production goes always sold out in the output market. Accordingly,

firm growth dynamics is driven by the decisions about how much output to produce. The

latter are in turn determined by the expected risk of bankruptcy and by the dynamics of
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firm costs (see (16)). As mentioned, bankruptcy risks are inversely related to the financial

robustness of the firm. The same is true for the cost of capital. Indeed, the interest

rate rule in (23) implies that firms are ranked by banks according to their relative financial

conditions. As a consequence, firms financially more (less) robust will pay, coeteris paribus,

lower (higher) interest rates for the funds they borrow. Moreover, an increase in the

economy-wide “financial fragility”, as reflected by a reduction of the average equity ratio

in the economy, maps, other things being equal, into higher interest rates for all firms

operating in the market3.

As far as labour cost is concerned, equation (22) states that labour cost inside the firm

depends on firm’s relative productivity with respect to the average level in the economy.

Firms with productivity above (below) average have unitary labour costs which are below

(above) average. This implies unitary expected profits above (below) the mean. Never-

theless, such an advantage is temporary, because it vanishes as new technologies spread

throughout the economy. In this fashion, learning is coupled in the model with other

key features (appropriability of innovations, market interactions) characterizing empirical

dynamics of productivity at the micro level.

As a result, technological variables influence competition among firms and growth by

determining productivity levels in the economy. On the one hand, both the vintage that

each firm owns and the skill with which it masters its embodied technology determine its

productivity level and, consequently, the magnitude of the relative advantage in labour cost.

On the other hand, the speed of learning and diffusion, and the magnitude of technological

spill-overs influence the duration of the cost advantage. Financial variables, in turn, play

a key role for the productivity dynamics of the single firm. The ability to afford more

productive vintages through replacement (see (13)) and to grasp the productivity gains

allowed by them (see (7)) will depend on the degree of financial robustness of the firm.

Finally, the model features a mapping from the space of technological variables to

the one of financial variables. Equation (22) implies that both the dynamics of unitary

labour cost inside the firm, and the corresponding one for net profits, depend on the ratio

between individual and average productivity. Firms more productive than the average will

have coeteris paribus lower unitary variable costs. This will map into a better ability to

absorb the impact of output price shocks. In other words, the effect of a negative (positive)

demand shock will be dampened (reinforced) if real variable costs are lower. This will lead

to an improvement (worsening) of the financial conditions of the firm, with a consequent

3There are many institutional settings for the credit market that lead to the rule stated in (23).
For a survey on the working of credit markets under asymmetric information (and of its consequences
for aggregate performance) see Greenwald and Stiglitz (2001). For an empirical investigation on the
importance of firm financial conditions for credit contract clauses see Strahan (1999) and Hubbard, Kuttner,
and Palia (1999).
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higher (lower) probability of survival and future growth.

3 Simulation Results

In this Section, we report the results of Monte-Carlo simulation exercises carried out on

the model presented in Section 24. All simulations refer to a benchmark parameter setup

(see Table 1) and homogeneous across-firm initial conditions (see Table 2)5. Homogeneity

of initial conditions was assumed in order not to bias the subsequent micro- and macro-

dynamics, and to better appreciate the emergence of heterogeneous across-firm micro-

patterns.

For the sake of convenience, we employed in our simulations a linear form for the

interest-rate rule introduced in (23):

rit = r[1 + ρa(t) + (1− ρ)(amax(t)− ait)] (24)

Moreover, entrants’ technologies were drawn from a discrete uniform distribution.

We analyze simulated data from both a time-series and a cross-section perspective.

From a time-series (macro) point of view, we are interested in assessing whether our ag-

gregate series (output, investment, etc.) match empirically-observed business-cycle regu-

larities.

¿From a cross-section (micro) point of view, we want to understand if the model is able

to replicate the most important stylised facts highlighted by the industrial dynamics liter-

ature (e.g., the properties of firm growth and productivity dynamics; see also below). To

this end, we study the behaviour of the model after the system has relaxed to a sufficiently

stable dynamical pattern, which typically happens – for our benchmark setup – around

T = 10006.

In Section 3.1, we begin by presenting a qualitative and quantitative analysis of the

macro-dynamics. Next, in Section 3.2, we turn to describe the features of the micro-

dynamics of firm growth and productivity.

3.1 Macro-Dynamics

In this Section we study whether our simulated macroeconomic time series feature sta-

tistical properties similar to the empirically observed ones. We begin by assessing if the

4The simulation code (written in C++) is available from the authors upon request.
5All results presented below are reasonably robust to changes of the parameter setup and initial con-

ditions in a fairly large neighborhood of our benchmarks. For a discussion, cf. Section 4.
6More precisely, this time-span allows for the convergence of recursive moments of all statistics of

interest.
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basic fact of modern capitalist economies, i.e. the emergence of self-sustaining growth, is

displayed by our macro time series.

Next, we turn to an analysis of the properties of simulated aggregate variables at

medium, business-cycle frequencies. In particular, we apply a band-pass filter (Baxter and

King, 1999) to eliminate both low and high frequencies in the data. We then investigate

the patterns of output volatility and output-investment relation. Recent empirical evidence

has indeed documented the presence of significant changes in the volatility of aggregate

output within countries (see e.g. McConnell and Perez-Quiros, 2000; Stock and Watson,

2002). Moreover, aggregate investment is more variable than output, and appears to

be characterized by strong pro-cyclicality, with its movements being slightly coincident

with the ones of output (Agresti and Mojon, 2001; Stock and Watson, 1999; Napoletano,

Roventini, and Sapio, 2004).

Finally, we study whether technological shocks play any role in generating business

cycles in our model. The relation between technological shocks and business cycles has

been the object of a long debate over the last decades. Theoretical contributions have

highlighted many different ways through which technical advances can impact on economic

fluctuations at medium frequencies (Prescott, 1986; Kydland and Prescott, 1982; King and

Rebelo, 1999). Nevertheless, empirical evidence accumulated so far has mostly rejected the

hypothesis of technology-generated business cycles (see e.g. Gal̀ı, 1999; Forni and Reichlin,

1998; Jovanovic and Lach, 1997; Ramey and Francis, 2003). The impact of technology on

main macroeconomic time series, if any, is too delayed in time to be relevant at business

cycle frequencies7.

3.1.1 Long-Run Properties

As Figure 1 shows, self-sustaining growth characterized by fluctuations robustly emerges in

simulated aggregate output series. The same qualitative pattern is displayed by aggregate

investment and employment series (not shown). Average productivity is characterized by

long-run exponential growth as well (cf. Figure 2). Notice that technological improvements

play a key role in productivity dynamics. Indeed, the trend of average productivity closely

follows the one of the notional productivity of best vintages.

The qualitative results about the emergence of long-run growth are confirmed by a more

quantitative analysis. The first two rows in Table 3 report Dickey-Fuller tests (with a drift

in the null model) performed on the logarithms of our simulated macro series. Significance

7For example, Forni and Reichlin (1998) find that, although technological shocks account for half of
the total variance of output, they cannot explain its dynamics at business cycle frequencies. Likewise,
Jovanovic and Lach (1997) find that the diffusion of product innovations (i.e. technological shocks) has a
huge impact on the level of output, but underpredicts output movements over the business cycle.
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levels of the tests (in parentheses) clearly indicate that it is not possible to reject the null

hypothesis of at least one unit root.

3.1.2 Business Cycle Dynamics

To analyze the properties of macroeconomic dynamics at business cycle frequencies, we

applied a bandpass filter to our series8. Through this procedure, stochastic trends were

removed (see the third and fourth rows in Table 3) and business cycle frequencies were

isolated.

As Figure 3 displays, the behaviour of aggregate output at business cycle frequencies is

qualitatively close to the empirically-observed one: wide fluctuations and volatility clusters

emerge. In addition, the auto-correlation structure of output displays the typical decaying

pattern observed in actual time series (cf. Table 4 and Figure 6).

As far as the output-investment relation is concerned, simulations indicate that the

series of aggregate investment is much more volatile than the series of output (see Fig. 4,

top-panel, and last row in Table 3). Moreover, aggregate investment is characterized by

a pro-cyclical and leading behaviour with respect to output (see Figure 5, mid-left panel,

and the investment column in Table 4).

Our analysis suggests that technological shocks play a secondary role in driving the

business cycle. As a direct evidence of this proposition, Figure 7 reports cross-correlation

coefficients between technological shocks at lead zero and aggregate output at positive

leads9. The figure shows that the impact of technological shocks on output is very weak at

business cycles frequencies, even at the farthest leads considered. The same result holds

for the other variables. The unique notable exception is represented by average labour

productivity (not shown), which is affected by technological shocks in a relevant way,

especially at nearest leads.

Additional evidence about the weak effect of technological shocks on economic fluctua-

tions at medium frequencies can be gathered by observing the coupled dynamics of output

and average labour productivity. Indeed, since average labour productivity is driven by

technological shocks (see discussion above), its behaviour with respect to output can be

taken as an indirect indicator of the influence of technological shocks on business cycles.

8We employed a bandpass filter (6,32,50) in order to remove both highest and lowest frequencies in the
data while preserving those at business cycle dates. The window for the filter (i.e. 6 to 32 periods) was
calibrated on the one chosen by Stock and Watson (1999) for their analysis of the U.S. cycle. Our large
simulated dataset allows us to adopt a higher level for the cut-off parameter (50 periods). Nonetheless,
results at business cycle frequencies are robust to different specifications of the window and cut-off para-
meters. For an analysis of the pros and cons of the use of band-pass filtering in ACE models see Roventini,
Fagiolo, and Dosi (2004).

9Technological shocks are defined as the change in the notional productivity of best vintages entailed
by the introduction of a new vintage.
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More precisely, if labour productivity had any effect on output, then its dynamics should

have been – at the very least – coincident with (or leading) the output one. However,

average labour productivity appears to be a pro-cyclical variable in our model, and its

movements are lagging output ones. The bulk of its cross-correlations with output is in-

deed concentrated between lag 4 and 6 (Figure 5, bottom-left panel).

Finally, changes in average financial conditions in the economy sensibly affect the be-

haviour of aggregate output during business cycles. The volatility of aggregate net worth

is indeed very close to the one of aggregate output (see Table 3). In addition, the dynam-

ics of aggregate net worth over the cycle closely follows the dynamics of output (see the

corresponding columns in Table 4 and Figure 5, bottom-right panel).

In summary, the coupled dynamics of financial and technological variables appears to

be characterized by many qualitative and quantitative properties that are also displayed

by empirical data, both in the long-run and at medium range, business-cycle frequencies.

Changes in the average financial conditions in the economy emerge as the major cause of

short-run fluctuations. In particular, movements in aggregate net worth appear to pro-

mote, first, changes in aggregate output and employment, and, subsequently, in aggregate

investment and average productivity (Figure 5). Conversely, at business cycle frequencies

the impact of technological shocks on the first moments of the distributions of financial

and real variables is on average rather weak.

3.2 Micro-Dynamics

In recent years, a lot of effort has been devoted to the study of the statistical properties

of firm growth and productivity dynamics. For example, the properties of firm growth

dynamics have been tested against the benchmark hypothesis of randomness represented

by the so-called “Gibrat’s Law” (GL), which basically states the independence of firm

growth from its size. A consistent amount of evidence has been produced against this law

(Lee et al., 1998; Bottazzi and Secchi, 2003a). The statistical properties of firm size and

growth distributions seem to significantly depart from the log-normal benchmark implied by

the GL. On the other hand, a recent body of empirical research performed on longitudinal

micro data sets has revealed that the process of productivity growth at the micro level is

not as smooth as the one represented in more aggregate series (see Bartelsman and Doms,

2000, and references therein). In particular, the presence of significant and persistent

differences in productivity levels among firms appears as the basic feature underlying the

dynamics of productivity in most sectors and countries. Moreover, productivity seems to
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have non trivial effects on firm growth10. Indeed, firm productivity appears to be positively

correlated with growth rates and exit probability.

In what follows, we will test whether firm size and growth rate distributions generated

by our benchmark simulation are coherent with the implications of GL. Next, we will

investigate the properties of the coupled productivity-growth dynamics.

3.2.1 Statistical Properties of Pooled Size and Growth Distribution

In one of its most widely accepted interpretations, the GL (also known as “Law of Pro-

portionate Effects”) states that firm growth is independent of firm size. Accordingly, the

dynamics of firm size, Sit can be formalized as follows:

Sit = Sit−1Git (25)

where Git is a random variable. If git = log(Git) are i.i.d. random variables with finite

mean and variance, then Sit is well approximated, for large t, by a log-normal distribution.

In addition, growth rates git = ∆log(Sit) are normally distributed. A recent strand of

empirical research has led to discard the implications arising from processes like the one

formalized in (25). More precisely, tent-shaped growth rates densities appear as a robust

feature both across sectors and at the aggregate level (Lee et al., 1998; Bottazzi and

Secchi, 2003a). At the same time, the shape of log firm size densities is far from being well

approximated by a log normal distribution and displays a strong cross-sector heterogeneity

(Bottazzi and Secchi, 2003a).

Figure 8 shows the rank-size plot for the pooled simulated size distribution over the

whole time span considered in our analysis11. Notice how the size distribution can hardly

be approximated by a log-normal. In particular the mass of the distribution appears to

be considerably shifted to the right. Furthermore, pooled growth rate distributions depart

remarkably from the Gaussian benchmark. Indeed, as shown in Figure 9, growth rate

distributions are characterized by fat tails and are well approximated by a symmetric

Laplace density.

The foregoing evidence – departure from lognormality of firm size distributions and

fat-tailed Laplace densities for firm growth rates – reveals that the simulated process of

firm growth does not follow the Gibrat’s dynamics formalized in (25), but closely matches

the empirically-observed stylised facts.

10See Bottazzi, Cefis, and Dosi (2002) for a more skeptical view about the presence of the productivity-
growth relation in Italian data.

11The size measure considered was the output level Yit. Alternative measures of size (e.g., employment)
produced the same results. The size measure considered was then depurated by years averages in order to
remove time-trends in the moments of the distributions.
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Notice that this result is due, in the model, to the interplay between two crucial factors.

On the one hand, repeated interactions among heterogeneous firms generate, as mentioned

above, an unequal distribution of growth opportunities in the market. On the other hand,

the existence of dynamic increasing returns in credit and labour markets implies that

growth opportunities in a given time span will mostly concentrate in a few firms, which

will then display higher growth rates. This feature leads, in turn, to the emergence of

leptokurtic densities of firm growth rates12. In the credit market, for example, firms who

are more (less) financially robust will have higher (lower) unitary cost on capital. This

implies a higher probability of having better (worse) financial conditions in next periods.

Likewise, in the labour market firms who are more (less) productive (than the mean) have

lower (higher) labour costs, and this maps in a higher chance of having better (worse)

financial conditions in next periods. This may drive subsequent learning, a more effective

technological adoption, and higher productivity.

3.2.2 Productivity Dynamics and the Evolution of the Productivity-Growth

Relation

The presence of heterogeneity in firm productivity levels appears as a robust pattern char-

acterizing the micro data in our benchmark simulations. Indeed, as Figure 10 shows, the

standard deviation of productivity is positive and characterized by an exponential trend.

Hence, asymmetries in the evolution of financial variables map in different abilities of catch-

ing the opportunities offered by new technologies. Indeed, firms which are more financially

robust increasingly perform replacement investment and technological learning.

Productivity patterns are also characterized by a persistent heterogeneity among firms.

Tables 5 and 6 show the average (forward and backward) productivity transition matrices

over 20 periods13. More precisely, each row in Table 5 displays the average fractions of

firms who were in a given quintile of the productivity distribution at the beginning of a

twenty period interval and moved to each quintile of the distribution at the end of the

interval. Each row in Table 6 shows instead the average fractions of firms in a given

quintile of the productivity distribution at the end of a twenty period interval that come

12For a similar interpretation, cf. the “island-models” of firm growth (see e.g. Sutton, 1997; Ijiri and
Simon, 1977; Bottazzi and Secchi, 2003b). In particular, Bottazzi and Secchi (2003b) show that, under
very general conditions, Laplace densities emerge as long as the growth process features an asymmetric
distribution of finite growth opportunities among firms and dynamic increasing returns in the technology
of opportunities assignment.

13We split the whole time-span analyzed in equally longer intervals of twenty periods, and for each of
them we computed the transition matrices of productivity of firms that were present both at the beginning
and at the end of the interval considered. Tables 5 and 6 report the average transition values together
with their standard deviations.
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from each quintile of the distribution at the beginning of the interval14. The fact that the

two matrices are very similar indicates a strong persistence of productivity differences in

our sample.

Finally, we investigate the properties of productivity-growth and productivity-exit cor-

relations. As mentioned, empirical evidence shows that more (less) productive firms are

characterized by higher (lower) growth, and by a lower (higher) probability of exit. As

Figure 11 indicates, both patterns emerge as quite robust properties in our model.

4 Conclusions

In this paper, we have presented an agent-based model which attempts to investigate

how the coupled dynamics between financial variables and technological shocks shapes the

aggregate dynamics of economies populated by heterogeneous agents. A key feature of

the model is its bottom-up approach to the microfoundation of macroeconomic relations.

We studied the extent to which the model was able to reproduce empirical properties

characterizing aggregate time-series and cross-sectional dynamics.

Simulation results indicate that the adjustment to technology and demand shocks of

heterogenous, myopic, firms that take into account the risk of bankruptcy in their deci-

sions, allows for self-sustaining patterns of growth and business-cycle fluctuations in out-

put, investment, productivity and employment. The statistical properties of the output-

investment relation match, at business-cycle frequencies, those observed in reality. The

same holds for other time-series, e.g. technological shocks. Changes to net worth distri-

bution emerge as the major source of short-run fluctuations in the model. Conversely,

the effect of technological shocks on the first moments of the distribution of the main

macroeconomic time-series appears to be weak.

Our model is also able to reproduce the main stylised facts of firm growth and produc-

tivity dynamics. Indeed, the statistical features of firm size and growth rate distributions

depart significantly from the “Gibrat’s Law” benchmark. In particular, size distributions

are more skewed to the right than log normal ones, whereas growth rate densities display

excess kurtosis, with a shape well approximated by a symmetric Laplace density.

The productivity picture in our benchmark simulation is characterized by the presence

of huge and persistent asymmetries in productivity levels among firms. Furthermore, a

positive correlation between productivity and growth, and a negative one between produc-

14For example, cell (2,3) in Table 5 reports the average fraction of firms who were in the second quintile
at the beginning of a twenty-period interval and moved to the third quintile at the end of the interval.
Similarly, cell (2,3) in Table 6 reports the average fraction of firms who ended up in quintile 2 at the end
of a twenty-period interval and were in quintile 3 at the beginning of the interval.
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tivity and exit, emerge as distinctive attributes of our benchmark setup.

The foregoing findings should be tested against a deeper Monte-Carlo exploration of the

parameter space. More precisely, one could study to what extent our results are modified

when system parameters are varied across suitable intervals. For example, the consequences

of changes in the interest rate for output, investment and employment dynamics could be

investigated. Similarly, one could experiment the impact of alternative settings for labour

and credit markets, as well as the effect of different entry-regimes (Geroski, 1995).

Furthermore, a more detailed investigation of the linkages between micro- and macro-

dynamics is required. Two research questions seem to be particularly interesting. First,

the time-evolution of cross-section distributions could be more carefully spelled out. In

this way, one might address the issue whether micro-patterns change during the diffusion

of a new technology. Second, the exploration of the impact of micro-dynamics on aggregate

variables should not be confined – as we have done above – to averages only. For example,

one could study whether technological shocks affect higher moments (e.g., variance) of

output and investment series.

Finally, one might attempt to investigate the consequences of introducing more stringent

bounds to agents’ rationality (e.g., in the way firms form expectations about technology

and prices and/or in the way they make choices under uncertainty). For instance, one

could study the implications of injecting in the economy agents embedding the axioms of

Prospect Theory (see e.g. Kahneman and Tversky, 1979; Camerer, Lowenstein, and Rabin,

2004) or, alternatively, agents behaving in more evolutionary, routinized ways (Fagiolo and

Dosi, 2003).
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Description Symbol Value
Number of Firms N 250
Arrival Rate λ 0.025
Unitary Increment ξ 0.200
Speed of Learning β 0.500
Cost w/o Replacement µo 1.500
Cost w/ Replacement µn 2.500
Loss on Production due to Replacement σ 0.050
Learning Spill-Overs ω 0.330
Initial Skill on New Technologies η 0.200
Wage/Productivity Ratio φ 0.700
Exogenous Interest Rate r 0.053
Risk-Premium Coefficient ρ 0.500
Reduction of Capital Stock δ 0.025
Support of Price Distribution γ 0.250

Table 1: Benchmark Parametrization.

Description Symbol Value
Initial Net Worth A(0) 20

Initial Capital Stock K(0) 100
Initial Debt B(0) 80

Initial Production Y (0) 100
Productivity of First Vintage θ(0) 1.5

Initial Interest Rate r(0) 0.053

Table 2: Initial Conditions.

Output Aggr.Inv. Empl. Avg.Prod. Net Worth
DF Test (logs) -0.475 -1.173 -0.468 5.148 -0.474

(1.000) (1.000) (1.000) (1.000) (1.000)

DF Test (Bpf) -5.360 -8.096 -6.066 -5.433 -5.461
(0.010) (0.010) (0.010) (0.010) (0.010)

Std.Dev. (Bpf) 0.356 1.616 0.430 0.018 0.358
Rel. Std. Dev. 1.000 4.543 1.210 0.051 1.008

Table 3: First two rows: Dickey-Fuller Tests for Log of Output (first row) and Band-
Pass Filtered (6,32,50) Output Series. Significance levels in parentheses. Third Row:
Standard Deviations of Band-Pass Filtered (6,32,50) Output Series. Fourth Row: Standard
Deviations Relative to Band-Pass Filtered (6,32,50) Output Series.
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Output Leads Output Aggr.Inv. Empl. Avg.Prod. Net Worth
-6 -0.221 -0.239 -0.211 0.416 -0.194

(0.000) (0.000) (0.000) (0.000) (0.000)
-5 -0.087 -0.252 -0.085 0.312 -0.058

(0.034) (0.000) (0.032) (0.000) (0.141)
-4 0.117 -0.248 0.103 0.174 0.142

(0.003) (0.000) (0.009) (0.000) (0.000)
-3 0.385 -0.192 0.359 0.031 0.409

(0.000) (0.000) (0.000) (0.435) (0.000)
-2 0.678 -0.053 0.638 -0.093 0.696

(0.000) (0.183) (0.000) (0.018) (0.000)
-1 0.911 0.163 0.854 -0.185 0.917

(0.000) (0.000) (0.000) (0.000) (0.000)
0 1.000 0.396 0.924 -0.242 0.990

(0.000) (0.000) (0.000) (0.000) (0.000)
1 0.911 0.562 0.821 -0.266 0.886

(0.000) (0.000) (0.000) (0.000) (0.000)
2 0.678 0.594 0.586 -0.263 0.642

(0.000) (0.000) (0.000) (0.000) (0.000)
3 0.385 0.484 0.309 -0.238 0.345

(0.000) (0.000) (0.000) (0.000) (0.000)
4 0.117 0.282 0.070 -0.199 0.078

(0.004) (0.000) (0.075) (0.000) (0.047)
5 -0.087 0.066 -0.096 -0.154 -0.116

(0.028) (0.096) (0.015) (0.000) (0.003)
6 -0.221 -0.098 -0.209 -0.111 -0.246

(0.000) (0.013) (0.000) (0.005) (0.000)

Table 4: Cross-Correlations between Aggregate Variables at Lead Zero and Output at
various Leads and Lags. P-values in parentheses.
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Quintiles 1 2 3 4 5
1 0.3520 0.2148 0.1651 0.1388 0.1250

(-0.1258) (0.1106) (0.0967) (0.1156) (0.1367)
2 0.3252 0.2885 0.1691 0.1138 0.1009

(0.0943) (0.1253) (0.1112) (0.0839) (0.1210)
3 0.17202 0.34432 0.26494 0.13867 0.07949

(0.0855) (0.1452) (0.1433) (0.0936) (0.0925)
4 0.0964 0.1289 0.3426 0.3287 0.1026

(0.0596) (0.1286) (0.1612) (0.1771) (0.0837)
5 0.0553 0.0224 0.0577 0.2861 0.5753

(0.0432) (0.0345) (0.0802) (0.2003) (0.2583)

Table 5: Forward Productivity Transition Matrix. Time-series standard deviations in
parentheses. Each (h, k) entry represents the estimated average fraction of firms that
belong at the beginning of a 20-period interval to the h-th quintile of the productivity
distribution and end up in the k-th quintile at the end of the interval.

Quintiles 1 2 3 4 5
1 0.3512 0.21427 0.1641 0.1374 0.1271

(0.1257) (0.1101) (0.0955) (0.1144) 0.1393
2 0.3255 0.2892 0.1700 0.1134 0.1034

(0.0932) (0.1262) (0.1132) (0.0836) (0.1246)
3 0.1721 0.3457 0.2644 0.1384 0.0810

(0.0855) (0.1476) (0.1409) (0.0939) (0.0939)
4 0.0961 0.1286 0.3436 0.3288 0.1047

(0.0587) (0.1283) (0.1636) (0.1793) (0.0852)
5 0.0544 0.0221 0.0577 0.2806 0.5747

(0.0428) (0.0348) (0.0821) (0.1984) (0.2580)

Table 6: Backward Productivity Transition Matrix. Time-series standard deviations in
parentheses. Each (h, k) entry represents the estimated average fraction of firms that
belong at the end of a 20-period interval to the h-th quintile of the productivity distribution
and started in the k-th quintile at the beginning of the interval.
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Figure 1: Output Time-Series.
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Figure 2: Productivity Trend. Solid line: Average Productivity. Dashed Line: Notional
Productivity of Best Vintages.
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Figure 3: Band-Pass Filtered Aggregate Output.
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Figure 4: Output, Investment and Employment (Band-Pass Filtered) Time-Series. Top
Panel: Output vs. Aggregate Investment. Bottom Panel: Output vs. Aggregate Employ-
ment.
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Figure 5: Output Correlation Structure. Cross-correlation between Aggregate Variables at
lead zero and output at various leads and lags (solid line). Dashed lines: confidence bands.
X-axis: leads of output. Band-Pass Filtered Series.
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Figure 6: Output Autocorrelation (solid
line). Dashed lines: confidence bands. X-
axis: leads of output. Band-Pass Filtered
Series.
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Figure 7: Technological Shocks and Ag-
gregate Output. Cross-correlation between
technology shocks at lead zero and output
at positive leads (solid line). Dashed lines:
confidence bands. X-axis: leads of output.
Band-Pass Filtered Series.
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Figure 8: Firm Size Distribution. Pooled Rank-Size Plot (solid line) vs. Log-Normal Fit
(dashed line).
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Figure 9: Firm Growth Rate Distribution. Pooled Growth-Rate Density (circles) vs.
Laplace Fit (dashed line).
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Figure 10: (Log of) Time-Series Productivity Standard Deviation.
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Figure 11: Productivity, Firm Growth and Exit. Top-panel: Within-bin average firm
growth rates vs. within-bin average labour productivity. Bottom-Panel: Within-bin aver-
age firm reservation prices vs. within-bin average labour productivity. Bins computed as
5%-percentiles.
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