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Abstract

The paper compares the properties of market dynamics, under different trading pro-
tocols. At an empirical level, we present some evidence stemming from the comparison
between different intra-daily trade regimes within the world largest Stock Exchanges.
Such evidence also motivates the investigation of the properties of an agent-based model
under three alternatives market mechanisms, namely a Walrasian auction, a batch auc-
tion and an ‘order-book’ double auction. The results highlight the importance of market
mechanisms per se, even when holding constant the behavioural characteristics of the

agents.

1 Introduction

In this work we explore the impact of different institutional structures governing financial
market interactions upon market dynamics. Motivated also by some suggestive comparative
evidence drawn from the world largest Stock Exchanges, we compare the statistical properties
of three alternative market models, namely simplified versions of (i) Walrasian auctions; (i)

batch auction-type markets and (744) ‘order-book’-type markets.

*Among the many insightful comments which helped in shaping the present draft, we would like to men-
tion in particular those by Doyne Farmer, Thorsten Hens, Blake LeBaron and Yi-Cheng Zhang. The usual

disclaimers applies.



The roots of the investigation do ramify well beyond the confines of financial markets.
They concern indeed one of the most controversial questions which the economic discipline
has faced since its origins, that is: What determines the relatively orderly aggregate properties
— if any — and the degrees of efficiency of market exchanges? Are they mainly due to what
goes on in the agents minds, or, conversely, are they primarily the outcome of some organizing
processes which market mechanisms themselves impose?

Ultimately, one may think of four basic interpretations and combinations thereof.

A first one emphasizes the purported equilibrating features of the fine understanding agents
supposedly hold both of their environment (possibly including the strategies of other agents)
and of the means to pursue their interests. Obviously, “rational expectations” are the extreme
version, but — in much milder forms — the emphasis on the equilibrating (or disequilibrating)
role of agents beliefs and behavioural rules dates back at least to Adam Smith’s Theory of
Moral Sentiments.

A second almost symmetric opposite perspective points are the orderly properties of mar-
ket selection — in the roughest version, of any market — rewarding successful behaviours and
weeding out failing ones, irrespectively of the degrees of exr ante ‘rationality’ which individual
agents display. Again, it is a conjecture with a respected pedigree, featuring in contempo-
rary economics Milton Friedman’s famous “as if” argument and a few more sophisticated
reassessments in evolutionary games frameworks!.

A third major view focuses upon the properties of particular distributions of budget-
constrained behaviours over heterogeneous, possibly ‘bounded rational’, populations. Promi-
nent examples are — away from the financial arena — Werner Hildenbrand’s path-breaking
investigations of the statistical conditions yielding ‘well behaved’ demand functions?, and —
nearer our concerns here — Gode and Sunder’s analysis of ‘zero-intelligence’ agents®.

Finally, a fourth perspective, which one could call the “grand evolutionary view”, con-
jectures that relatively orderly market dynamics are emergent properties stemming from far-

from-equilibrium interactions amongst heterogeneous learning agents®.

!The classic reference on the “as if” argument is Friedman [1953]. Many evolutionary analyses do involve
explicit accounts of market selection processes, but reject claims that any selection in any type of market will
necessarily yield aggregate ‘ordered’ properties and even less so optimal ones (more on these issues in Dosi and
Winter [2002] and the references therein). More specifically on financial markets, see Blume and Easley [1992]

and De Long et al. [1991] on the possibility of long-term survival of purportedly “irrational” behaviours.
2Hildenbrand [1994]; see also Aversi et al. [1999] for an attempt to link such an analysis with an underlying

evolution of preferences.
3Gode and Sunder [1993]; see however also the critical remarks in Cliff and Bruten [1997].
“Such a ‘grand program’ is spelled out at greater detail in Dosi and Winter [2002].



Come as it may, institutions governing the physics of exchanges — including centralized vs.
decentralized trading mechanisms, the frequency of trading, the rules for price formation and
those prescribing who is trading with whom and when — are central to this latter interpre-
tation, but are also likely to be important parts of the other three, except for their simplest
versions. After all, market institutions shape also the information agent access, the processes
of competition and selection, the mechanisms of aggregation and price formation, etc.

However, surprising as it sounds, not much work has gone into the study of the aggregate
implications of different architectures of both financial and real markets®. As LeBaron ends his
survey of agent-based models of financial markets, one of the major open issues ahead concerns
the study of the properties of different trading set-ups (LeBaron [2000], p. 698). This is also
the point of departure of this work which tries to identify some distinctive properties of diverse
market mechanisms.

More precisely, one begin to address two challenging questions, namely,

i) what happen to market dynamics if one changes market interaction mechanisms, while
holding constant individual characteristics (including the distribution of cognitive and

behavioural patterns), and, conversely,

i1) holding constant institutional set-ups governing information diffusion and interaction

patterns, what happens as one varies the “ecology” of behavioural types of agents?

We address this questions making use of an agent-based simulation environment, ‘The
Financial Toy Room’ (FTR)%. On purpose we tackle the task by incremental steps. For the
time being, we freeze all learning processes and we focus on the comparative properties of di-
verse institutional architectures, of trading mechanisms nesting different (budget-constrained)
populations of ‘fundamentalist’ and ‘chartist’ agents.

In section 2 we present some novel evidence on the properties of daily time series under
the two alternative market protocols which distinguish the opening and closing phases of
major Stock Exchanges. While a few statistical ‘stylized facts’ hold across countries and

across market regimes, finer properties are seemingly influenced by the latter. How can one

5 Among the remarkable exceptions these are the studies by Alan Kirman and collaborators: see for example
Kirman and Vignes [1991] on the fish market. Concerning financial markets, ‘microstructure’ studies (see
Goodhart et al. [1996] and a few other contributions in Frankel et al. [1996]) certainly represent a major step

in the right direction, although one still falls short of any explicit account of the dynamics of exchanges.
6The original version of the FTR — now available at the site http://ftrsim.sssup.it — was developed by

Francesca Chiaromonte and collaborators at the International Institute of Applied System Analysis (ITASA),
Laxenburg, Austria: cf. Chiaromonte and Dosi [1998].



model such dependencies of market dynamics upon institutional set-ups? As one discusses
in section 3, multiple-agent “artificial market” models have not paid so far much attention
to the issue. On the contrary, this is what we formalize there, based on the FTR simulation
environment. Results (section 4) robustly support the importance of specific institutional
arrangements, and, together, hint at a thread of often non-linear interactions between market

institutions and behavioural ecologies which represent a puzzle on their own.

2 Generic stylized facts and institution-dependent phe-
nomena

A good deal of current research on the statistical properties of financial time-series has gone
— indeed for sound reasons of precedence — into the identification of robust, generic properties
which appear to hold across markets and across different temporal windows of observation.
As well known, such stylized facts include fat-tailed distributions of returns; ARCH effects;
autocorrelation of volumes and cross-correlation volumes/volatility (for detailed discussions,
cf. Brock [1997], Brock and de Lima [1995], Guillaume et al. [1997], Levy, Levy and Salomon
[2000], Dacorogna et al. [2001]). However, quite a few studies, broadly in the ‘microstructure
perspective’ have been also devoted to the degrees to which particular market organizations
contribute to parameterize the foregoing generic properties and/or yield further institution-
specific phenomena (cf. among others Amihud and Mendelson [1987], Stoll and Whaley [1990],
Madhavan [1992], Biais et al. [1999] and the survey in Calamia [1999]).

One way of tackling the topic, which we share here, is by exploiting the fact that most Stock
Exchanges daily undergo the transition between two diverse sets of market protocols. A first
opening section is typically organized as a periodic batch auction in which orders are collected
during a call period to form demand and supply schedules that are crossed to determine the
unique equilibrium price (corresponding to the maximum executable volume) at which all
transactions occurs. This is followed by a trading section characterized by continuous double
auctions in which each agent can post bid and ask prices. In turn such continuous auctions
may involve a special category of agents — the market makers — surrogating the auctioneer and
making public either firm bid and ask prices (under the “quote-driven” system) or buy/sell
intentions (under the “order-drive” system) and an order book in which limit orders are stored.
The trading phase terminates with a closing section yielding the fixing, i.e. the closing price,
often obtained by the weighted average of transaction prices over the last period of the trading

section.



Given the significant difference in the architectures of exchanges between the opening and
trading phases, their comparison might reveal precious albeit circumstantial information on
their comparative properties.

So, for example, Amihud and Mendelson [1987] and Stoll and Whaley [1990] compare the
open-to-open and close-to-close daily series on the NYSE highlighting higher volatility and
negative autocorrelation of returns in the former.

Expanding on such a line of inquiry, here we compare the open-to-open and close-to-close
daily series for “blue-chips” over the period 1/1/1997 - 14/4/2002 for the Stock Exchanges of
Paris, Frankfurt, Milan, New York, Madrid, London, Tokyo and Toronto”.

In particular one is interested in comparatively assessing linear predictability; autocor-
relation of price returns; skewness and kurtosis in the distribution of returns themselves,;
cross-correlation volume/returns; ARCH effects and cross correlation returns/volatility®.

The evidence reveals that some properties do not discriminate between the two market

regimes:

e Dickey-Fuller tests highlight the presence of a unit root in all price series and annual

volatilities® of returns are nearly the same across markets and trading phases;
e first-order autocorrelation in volumes are all significantly positive and quite high;

e positive cross-correlation volume/returns and volume/volatility are general phenomena

(even if they appear somewhat more pronounced in the close-to-close series);

e kurtosis is much higher than that associated with Gaussian distribution, revealing fat

tails in the return distribution of all series.
At the same time, two properties stand out as regime-related (see Fig. 1 and Fig. 2):

e opposite autocorrelation patterns (with the exception of Tokyo Stock Exchange) occur.
Open-to-open price series display a negative autocorrelation while close-to-close series

entail positive (although not statistically significant) autocorrelation'?);

7Our series are simple averages over a subset of blue chips from CAC 40, DAX 30, MIB 30, DJIA 30, IBEX
35, UKX 100, TPXC 30, and TSE 35, after eliminating those stocks which have a life shorter than our period

of observation.
8The full analysis can be obtained from authors upon request.
9This is measured as the standard deviation computed on daily date times 1/250.
10 A priori, one should just expect a modest positive autocorrelation on all indexes due to the so-called “small

cap effect” (cf. Brock [1997] and Campell et al. [1997].
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Figure 1: The autocorrelation of returns for Figure 2: Testing for ARCH effects for open-

open-to-open and close-to-close series. to-open and close-to-close returns.

Table 1: Statistics from SETS of LSE.

Returns Skewness | Kurtosis | Abs. deviation | Annualized volatility
Close-to-next-open -2.51 37.7 0.0034 0.084
Open-to-close 0.46 8.4 0.006 0.13

e ARCH effects, while generally present appear to be more pronounced in opening prices

(with the exception of the Italian and Japanese Stock Exchanges).

A complementary exercise concerns the impact of different markets phases within the
same market. In order to investigate the phenomenon one has to consider close-to-next-
open and open-to-close returns. Some problems arise with the latter statistics because the
trading section is often a complex mix of ‘order book’ protocols and market maker intervention
(sometimes interrupted by intra-day batch auctions) which is impossible to separate in their
effects. In order to overcome this drawback we have singled out a segment of stocks traded
in a pure ‘order book’ protocol'!: the Stock Exchange Electronic Trading Services (SETS) of
the London Stock Exchange (LSE) of which we have analyzed daily data for 80 equities in the
time window 1/1/1997 to 14/4/2002.

The statistics summarized in table 2 are sufficient to highlight the difference between the

two phases.

Note in particular that the skewness of returns is significantly negative for the opening

" That follows the usual batch auction opening the daily section.



phase, whereas it is not present in open-to-close returns.

We do not have any ready interpretation of these phenomena. For the time being, let us
just consider them as adding to the circumstantial evidence on the impact of the forms of
market organization upon market dynamics.

Clearly one of the paramount difficulties in disentangling such a relationship rest in the
impossibility of making real world, historical, experiments changing market institutions and
leaving the rest constant.

However, one way of partially overcoming such an obstacle is via laboratory experiments
(for influential discussions of the role of market set-ups in experimental economics, cf. S.
Sunder [1995], V. Smith [1982] and Plott and Sunder [1988] among others).

Another complementary way is through the “thought experiments” entailed in the compar-
ison between computer-simulated “artificial markets”, diverse by construction in their market

set-ups. This is what we shall do next.

3 Different market architectures and heterogeneous be-

haviours: an agent based model

The spirit of the model which follows is to a large extent akin that inspiring already exist-
ing computer-simulated “artificial financial markets”, such as those by Arthur et al. [1997],
Beltratti and Margarita [1992], LeBaron [2001], Lux and Marchesi [1999] and Marengo and
Tordjman [1996] (see the review in LeBaron [2000]).

Obvious common points of departure are (i) the acknowledgment of the limitations of
models of market dynamics centered upon the behaviour of a mythical representative agent
endowed with unbiased forward-looking expectations and, conversely, (i7) the challenge of
founding the theory into an explicit account of heterogeneous interactive agents.

Within such a common perspective, however, differently families of models significantly
differ in the ways they model both the agents behavioural repertoires and the mechanisms of
interaction.

Concerning the former, one happens to find a whole range of modeling commitments going
from relatively realistic stylizations of the trading rules of actual practitioners all the way to

“zero intelligence” agents just subject to budget constraints!2.

12Palmer et al. (1994) is nearer to first extreme while Gode and Sunder (1993) are of course archetypes of
the second one. Moreover, in a few models agents are allowed to endogenously differentiate through adaptive
learning: cf. Arthur et al. (1997) and Lux and Marchesi (1999).



Regarding trading protocols one finds two basic modeling styles and variations thereof.
A first one compresses collective interactions into “law” governing price responses to excess
demands (cf. Farmer [2002]). Conversely a second family of models attempt to model explicit
trading mechanisms. Remarkably, however, even those models taking this latter route have
hardly addressed a systematic comparison of the properties of different mechanisms. This is
the task of the present work.

Our model describe a population of N heterogeneous agents acting as speculative investors
and participating in the discrete-time trading of two assets: a riskless bond B that pays a
constant interest rate r at each time steps and a risky asset A paying a constant dividend d.
The value of r and d are common knowledge and the price of the asset A in term of B is fixed
by the market.

On the behavioural side we stick to a rather simple ecology of agents, just comprising
“noisy fundamentalists” and trend following chartists. In that, our agents — unlike “zero
intelligence ones” — do have some reaction algorithm to the dynamics of the environment, but
— alike them — are prevented from adaptively refining their understanding of the market.

Concerning market architectures, we compare three institutional set-ups, namely,

e A Walrasian auction in which all agents transfer their whole demand curves to the

auctioneer that matches them in order to clear the market.

e A batch auction in which each agents can simultaneously post a buy or a sell order.
Demand and supply schedules are then derived and crossed in order to determine the

equilibrium price at which all agents exchange.

e An order book in which agents can post both market and limit orders that are matched

following a price priority.

3.1 The market model: trading protocols

In each round of the Walrasian auction each agent i € [1, N] is supposed to provide the
auctioneer with its complete personal demand curve AA;;(p), i.e. the amount of the asset AA
that it is willing to buy (AA > 0) or sell (AA > 0) for each possible price p. The auctioneer
then compute the aggregate excess demand AA;(p) = >, AA;,(p) and fixes the asset price
p; at the value that clears the market: AA;(p;) = 0. Notice that, in general, the individual
demand functions are time dependent as agents react to changing market conditions. However
as long as personal demand curves are well-behaving decreasing functions, the existence and

uniqueness of p, is guaranteed.
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Figure 3: An example of supply and demand schedules for a batch auction. Suppose that buy
orders are all limit orders (the DD’ line). Conversely sell orders are composed by both limit
orders (the SS’, dotted line) and an amount M of market orders which shift upward total
supply to the line SS”. Correspondingly, market price shifts downward from P’ to P.

This stylized exchange protocol provides a price fixing mechanism that forces the market
to equilibrium at each iteration. This features makes it an excellent analytical benchmark. At
the same time, since the amount of information that the agents must provide to the auctioneer
is infinite, encompassing all the possible desired positions for all the possible prices, this can
hardly represent a sound approximation to any real trading mechanism wherein the handling
of (finite) information generally entails a non-zero cost, however small.

The others two trading protocols that we will consider are indeed based on the processing
of a finite amount of information.

Consider a batch auction. In each round each agent provides a (finite) number of “orders”
that can be considered as statements concerning the conditions for its participation to the

market. The following two basic instances of an order market are analyzed, namely:

limit orders represented as ordered couples (p, q) of a price p > 0 and a quantity ¢. For “buy
limit orders” (¢ > 0) the price p stands for the maximum price at which the order issuer
is willing to buy the asset quantity ¢. For “sell limit orders” (¢ < 0) p is the minimum

price at which the order issuer want to sell a quantity —q of the asset.

market orders (.,q) express only a quantity that should be sold (“sell market orders”), if
g < 0, or bought (“buy market orders”), if ¢ > 0 at the best available price (the lower

for buy orders and the higher for sell orders) on the market.

9



Once all the limit and market orders are collected, the auctioneer uses the former to build
a demand and a supply schedules, computing the total amount of asset notionally demanded
and offered at a given notional price. The market orders are “priced” at the price that is more
likely to guarantee their fulfillment among the prices of the limit orders of the same side, that
is the largest price for buy orders and the smallest for sell orders. Their quantities are simply
added to the schedules obtained with limit orders, which are in this way shifted vertically: see
Fig. 3 for an illustration.

The crossing point between the two curves so obtained identifies both the price p; and the
total traded quantity. The orders whose price p is consistent with p, (i.e. buy orders with
price > p; and sell order with p < p;) are totally or partially fulfilled. To this aim the orders
are considered in sequence, with higher (lower) prices and higher quantities taking precedence
for buy (sell) orders. This rule guarantees that the market orders are the first to be fulfilled.

Notice that, when the largest buy price is less that the smaller sell price, a total traded
quantity of 0 is obtained®3.

The two protocols presented so far are both characterized by some price fixing mecha-
nism that determines a unique price at which all the transactions take place. An alternative
“physics of interaction” has to be devised in order to approach a market settings similar to
the decentralized “continuous trading” phase of a stock exchanges, characterized by a contin-
uous flow of arriving orders that can be immediately executed or stored for possible delayed
execution. The name book comes actually from the list of unmatched orders that stands on

the market and are °

‘written” in a file in order to be possibly taken in consideration in future
transactions.

In our implementation, during a book session, agents are sequentially selected at random
and are requested to place a given amount of orders, both of limit and market types, to the

market. The arriving orders are managed according to the following simple rules:

limit orders are immediately executed against orders of the opposite side of the book (i.e.
buy side for sell orders and sell side for buy orders) if the price of the buy order is not
lower than the price of the sell order. The execution price is the one associated with
the order already in the book and the quantity is obviously the smaller between the two

orders!®.

13This event indicates that no trading can takes place during this session so that the price is considered

fixed at the value of the previous session and the next session begin.
141f the first matching does not completely fulfill the arriving order, this operation is continued until either:

1) no more suitable order are on the opposite side or

10



If there are not orders on the opposite side of the book or if the order is not completely

fulfilled, it is stored on the “book” on the basis of a price/quantity/time priorities.

market orders are treated analogously, after assigning them a price equal to the best order
on the opposite side. If there are no order on the opposite sides, a reference price is used

instead.

The reference price is equal to the price of the last transaction or the fixing price of the
last trading session if no transactions have yet take place. The fixing price of the session is

the last reference price of the session.

3.2 The Agents

The implementation of the foregoing trading protocols basically induces just a single require-
ment concerning the way in which one models the behaviour of agents: they should be able
to provide the auctioneer (or “the market”) with a well-behaved demand function or, alter-
natively, with limit/market orders. However, in order to compare market dynamics under
different protocols, it is mandatory to model as much as possible agents behaviours as gov-
erned by the same rules and shaped by the same kind of information. Ultimately, this means
that the way in which agents generate the orders to be posted in the batch auction and book
protocols should be consistent with the demand function they transmit to the auctioneer in

the Walrasian auction'®.

3.2.1 The demand functions

Let us start with the description of a generic agent 7.

i4) the arriving order is completely fulfilled

15Incidentally note that the requirement is far from trivial. For example, suppose that individual demand
functions come from a utility maximization procedure. In such a framework each agent has an infinite number
of market positions which lay on its demand curve. But then, how can one choose the finite number of orders
which traders deliver in batch auctions or continuous trading? Through some heuristic procedure? But then
how can these heuristics be extended to the generation of a complete demand function? Here one cannot
tackle these intricate issues. Suffice to say that the heuristic rules agents are assumed here to employ in the
batch auction and continuous trading can always be rationalized in terms of (myopic) wealth maximization

conditional on the “models of the world” agents hold.
16For the time being the suffix will be dropped for convenience, but it should be clear that all agent-specific

parameters can in principle be different within the population of agents. The specification of their values is

provided below.

11



At the beginning of the session each agent construct its individual demand function, and
determines the amount of wealth it wants to invest in the risky asset for any possible value
of the hypothetical transaction price p. The basic idea is that the agent willingness to invest
in the risky asset is based on its estimate of its own wealth in the next time step, i.e. on its
forecast of the stock price at time ¢t + 1. As customary such willingness increases with the
expectations of returns in excess of the riskless rate and decreases with the risk involved in
taking long positions on the asset. If W, is the wealth the agent wants to have invested in

the risky asset at the end of the trading session, one can then write

excess return

Wa(t) ~ (1)

Suppose now that the price of the asset is p. If E;_;[h] is the agent expected return on

risk

asset price, tomorrow’s wealth with a portfolio solely made of the asset is p(1 + E;_1[h]) + d
where d are the constant dividends. Tomorrow’s wealth of a portfolio of the same current
value, but invested in the bond would be p(1 + r). The agent evaluation of the excess return
of asset portfolio can then be written E; 1[h| + d/p — r. As an estimate of the risk involved
in the speculative activity, the agent takes its expectation about variance of price returns
Vi—1]h(t)]. Remembering that W4 (t) = A(t)p where A is the amount of risky asset possessed

by the agent, one obtains from (1) the demand curve

Ei 1[h(t)] —r+d/p @)
BVialh(®)]p
with AA(t) = A(t) — A(t — 1), where A(t — 1) stands for the quantity of risky asset at

AA(p,t) = At —1) +

the end of the previous trading session, and 3 is a constant capturing the agent risk aversion.
When 8 >> 1 even relatively low uncertainty on the future asset price is sufficient to strongly
decrease its attractiveness for the agent; for 3 << 1 the opposite holds '".

We add to (2) the restriction that agents cannot hold short positions in terms of both
assets and bonds. This means that AA(p,t) > —A(t — 1) and if the offered quantity of asset
resulting from (2) is greater then —A(t — 1), it is replaced with —A(¢ — 1). At the same time,
the demanded quantity of asset at price p cannot be larger then B/p where B denotes the
quantity of bonds possessed by the agent. The resulting demand function is in general not
continuous but presents a monotonically decreasing behaviour. Its shape depend on sign of

the difference y — r: illustrations are presented in Fig. 4 and Fig. 5.

"Notice that the demand function in (2) is basically grounded on a mean-variance evaluation of portfolio
consistent with a Markowitz-type approach to asset pricing. It cannot however be obtained, in general terms,

via an expected utility maximization procedure.

12
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Figure 4: An example of personal demand Figure 5: An example of personal demand
function for y < r. function for y > r.

We assume a demand function, consistent with agent budget-constraints, that depends
only on the parameter 3, measuring the agent risk aversion, and on the agent forecast about
future asset prices, captured by the two expectations E; {[h(t)] and V; 1][h(t)]. For sake of
simplicity, we suppose that agents obtain their forecasts using exponentially weighted moving
averages (EWMA) predictors. The recursive expression for the expected returns and variance

then becomes:

Efh(t+1)] = Q=X gAh(t—1)
Vit +1)] = (1= X)X, Nh(t = 7)* = B [h?
where F;_4[.] is the agent forecast of returns h(t) = p(t+1)/p(t) — 1 for period ¢t +1; V;_1[.]

(3)

is the estimation of the risk (referred to period ¢ + 1) and A € [0,1] is a weighting coefficient
setting the “time scale” on which the averaging procedure is performed. Note that setting

A\ = 1 simply turns off the updating algorithm: initial values are retained forever'®.

3.2.2 The generation of orders

Whatever the form of the demand function, to be able to participate to trading under batch
auction and book protocols, agents must be able to express single orders of both market and
limit types. To obtain that we follow a simple procedure: when an agent is required to provide
an order, it picks at random a price that is not too far from the last price of the asset p;_1
and then decide the associated quantity on the ground of its demand function. The support
of this distribution is decided by the distance from the last price of the asset and the agent’s
p* i.e. the price at which its present portfolio would face no rebalancing. The exact procedure
depends on the side of the order, i.e. whether of the buy or sell type.

For a sell order the order price p is obtained from

18This feature will be exploited below to model a particular class of agents.

13



log(p) = log(p") + € |log(p; 1) — log(p")| (4)

where € is random variable drawn from a uniform distribution in [0,1]. The associated
quantity is derived form the demand function §A(p). Clearly, according to (4) as p > p* the
quantity is negative, as it should be for a sell order. If € < 5, with n € [0, 1] a parameter
specific of the agent, the supplied order is a market order (.,JA(p)); otherwise it is a limit
order (p,6A(p)). The parameter n defines the agent propensity to submit market orders: if
n = 1 all the orders are market orders while if = 0 all the orders are of the limit type.

Analogously, for a buy order the price is obtained by

log(p) = log(p*) — €|log(p;—1) — log(p*)| (5)

where € has the same meaning as above. Notice that the buy order can in principle be
issued by agents having no share of asset, i.e. A = 0. In this case p* does not exists and the

following rule is used instead

log(p) = log(p;1) — € |log(p;—2) — log(ps1)| (6)

The subsequent determination of the order quantity and the decision whether to submit a
limit or a market order is done following the same rules as of the sell-type order.

Notice that, according to this whole procedure, the generated limit orders (p, AA(p)) are
points always laying on the agent demand function. Moreover, the prescription that agents
take in consideration the last price of the asset to generate prices for their orders is consistent

with the idea of maximizing the probability of the order to be fulfilled.

3.3 Behavioural heterogeneity

To sum up, the behaviour of any generic agent in our model can be completely specified with
only three parameters: the risk aversion [, the time horizon A on which it evaluates past asset
performances in order to build its own forecasts about price movement, and its propensity n
to submit market orders instead of limit orders (this last parameter being meaningful only in
markets characterized by a batch auction or order book protocol).

In this framework different forms of inter-agent heterogeneity can be easily obtained, as
we shall do below, by varying these parameters within the population.

However, in order to check the consistency of the posting rules described above let us first

consider the particular case with homogeneous agents, i.e. agents with the same value for
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Figure 6: Price and quantity behaviour with homogeneous agents for the three market proto-
cols. The model parameter are » = .01, d = .01, A =.991, f = 100 and n = .1 and agents are
initialized with heterogenous forecasts for F;_i[h(t)] and V;_1[h(t)].

the parameters 3, A and 7, differing only in the initial conditions concerning their estimated
forecast E; 1[h] and V; 1[h]. For suitable choices of the parameters the system possesses a
unique stable equilibrium with the asset price given by p = d/r. It is immediate to verify that
this price clear the market when F;_;[h] = 0, V;_1[h] = 0 in (2): this represents a fixed point
for the market dynamics (for a complete discussion about the stability of this fixed point, see
Bottazzi (2002)). As can be seen in figure 6, all the trading protocols produce very similar
results: the price tends asymptotically toward the equilibrium price while the traded quantity
goes to zero (the batch and order book protocols generate, as expected, some fluctuations in
traded quantities and prices whose amplitude tends however to zero when ¢ — oc). The same
kind of result for the homogeneous agents case is also obtained for choices of the parameters
that lead the system to periodic or aperiodic cycles (c.f. Bottazzi (2002)). In all cases, the
dynamics under the three protocols is almost identical (with some deviation essentially due to
the possibility to have zero trading for some time steps in the batch auction and order book
protocols).
The central question then becomes: what happens when one introduces heterogeneity?

There are two sources of heterogeneity in our model. A first one is “intrinsic” to the
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agents in so far as they differ from the start in their parameters 3, v and 7. A second one
is endogenous to market dynamics and concerns idiosyncratic shocks on the estimates agents
make.

In the following analysis we will use both forms of heterogeneity. In particular we introduce
two distinct groups of agents. A first group is formed by noisy fundamentalists. They are
characterized by A\ = 1 and by a dynamic noise in their forecasted excess return: hence they
do not update their expectations according to market dynamics, but extract them from a
given distribution independently at each round. A second group, which can referred to as
trend following chartists, are parameterized with a A\ = 0.97'°. They are basically “naive
econometricians” who obtain their forecasts from last market trends. Notice also that the
simple fact that these agents also constantly update their evaluation of risk, destroys the
possibility for them to generate a “rational bubble” dynamics of prices, even if they are the
only agents in the market (for a discussion of this point see Bottazzi (2002)).

Concerning endogenous heterogeneity, we add idiosyncratic shocks to agents forecasted
price returns extracted independently from a uniform distribution of support [—.01,.01] for
trend followers and [—0.5, 0.5] for noisy fundamentalists’.

Finally we experiment with different value of n (0, .1, .2, .3, .4, .5), homogeneous over the
population?!.

In our simulations we have experimented, within every market structure, with different
ecologies of types of agents with the following proportions between ‘noisy fundamentalists’

and ‘chartists’: 0/100, 25/75, 50/50, 75/25, 100/0.

4 Simulation results

In line with the empirical evidence discussed in section 2 we study the statistics concerning
skewness, kurtosis, autocorrelation of returns and autocorrelation of volumes.
We compute statistics using 2000 steps of simulation, after discarding the first 2000 in

order to avoid possible transient effects??.

19This value is near to the one actually used by practitioners as discussed in RiskMetrics Technical Manual.
20We set the value of 8 = 106 for the whole population. This seemingly very large number is due to the fact

that for convenience we normalize the total amount of asset to 1 while the dynamic depends on the product

of 8 and the total number of assets.
21Recall that the parameter captures the propensity to deliver market orders: for values of 1 higher than .5

an overwhelming number of market orders tends to reduce market liquidity, possibly leading to the absence of

trade for very low periods.
22We checked that the results obtained are independent with respect to the random number generator seed.
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Figure 7: Skewness for the batch and the
order book returns. The statistics are com-
puted with different population fractions of
noisy fundamentalists and with different val-

ues of 7.

Figure 8: Excess kurtosis for the batch
and the order book returns. The statistics
are computed with different population frac-
tions of noisy fundamentalists and with dif-

ferent values of 7.

It is remarkable that the simulation results, notwithstanding the utter simplicity of the
model, most often display comparative properties in tune with those of actual financial mar-
kets, both in terms of sign and even in the (rough) orders of magnitude.

Consider first the skewness in the distribution of returns, shown in Fig. 7. It is, rather
surprisingly, very low in the ‘book’ protocol — irrespectively of both the proportions in the
types of agents and the market order propensity — and it becomes just slightly negative when
the market is populated almost only by noisy fundamentalists. On the contrary, in the batch
auction the skewness is significantly negative and its value seems to depend on the population
composition but not on the parameter n. In fact it increases together with the proportion of
noisy fundamentalists and converge to zero when only noisy traders are present. In this case,
as expected, the distribution of returns tends toward a Gaussian one.

Kurtosis in return distribution is higher in batch auction than in the order book trading
mechanism, as shown in Fig. 8. In the latter case, it is almost independent from the different
forms of heterogeneity (except when only noisy fundamentalists are present). Conversely in
the batch auction it is very sensitive to 7 (showing an explosive behaviour when 7 ~ 0.5), but
not to proportion of agents types.

Of course, there is no way to match our ecologies of behavoiurs with empirical, unobserved,
ones. However, inter-institutional comparisons batch auctions vs. order books concerning
skewness and kurtosis in our simulations are in line with the evidence from actual data (see

table 2).
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Figure 9: Ratio of returns absolute devia- Figure 10: Excess kurtosis and skewness
tions in the batch and order book protocols. for Walrasian auction for different shares of
The statistics are computed for different pro- agents types. They converge to 0 when the
portion of agents types and for different val- market is populated only by noisy funda-
ues of 7. mentalist.

In the case of Walrasian auction, statistics confirm the results obtained for the batch
auction (see figure 10): the excess kurtosis is around 50 and the skewness is negative (about
-8). As expected, when the market is comprised of only noisy traders these two statistics
converge towards Gaussian values.

Returns autocorrelations are shown in table 2. They display a very short memory in
both batch auctions and order book markets (5 and 3 lags respectively), qualitatively in line
with empirical markets (although not in terms of orders of magnitude: our simulations yield
a far too high one-step autocorrelation). Moreover it is striking that the one lag negative
autocorrelation for the order book seems independent from both the ecology of agents and
the types of order posted. The same does not apply to the batch auctions that are apparently
very sensitive to both sources of heterogeneity.

Autocorrelations of volumes for the batch auction are reported in table 3. They show
a rather long memory, significant until ~ 20 time lags. No data are reported for the order
book where autocorrelations never move away significantly from 0. Again heterogeneity seems
matter in the former trading mechanisms, but not in the latter.

Finally the ratio of absolute deviations between order books and batch auctions reported
in Fig. 9 is around 1.4, meaning that the former produces a more volatile dynamics than the

latter 23.

23The absolute deviation is used for its robustness in measuring the distribution width when skewness and

kurtosis are large.
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% mnoisy n Batch auction Book
1 2 3 4 5 1 2 3 4 5

0 0.0 | 0.840 0.592 0.333 0.154 0.054 -0.252  -0.124  0.030 -0.009 -0.033
0 0.1 | 0.841 0.591 0.337 0.152 0.048 -0.321  -0.082 0.021 -0.001  0.021
0 0.2 | 0.839 0.587 0.326 0.146 0.050 -0.381  -0.074  0.077  -0.082  0.090
0 0.3 | 0.853 0.653 0.428 0.239 0.107 -0.341  -0.082  0.003 0.017 0.008
0 0.4 | 0.852 0.651 0.425 0.243 0.119 -0.321  -0.081  0.025 0.002 0.002
0 0.5 | 0.823 0.622 0.413 0.247 0.129 -0.260  -0.098  0.000 0.029  -0.033
50 0.0 | -0.589 0.124 -0.033 -0.009 0.003 | -0.763 0.423 -0.235 0.104 -0.043
50 0.1 | 0.816 0.615 0.380 0.189 0.062 -0.315  -0.027 0.037 -0.058  0.006
50 0.2 | 0.813 0.621 0.383 0.186 0.067 -0.336  -0.070  0.059 -0.040 -0.023
50 0.3 | 0.811 0.665 0.464 0.266 0.119 -0.322  -0.031 -0.014 -0.029 0.010
50 0.4 | 0.767 0.678 0.523 0.348 0.202 -0.306  -0.095  0.032 0.007 0.006
50 0.5 | -0.076  -0.092 -0.094 -0.023 -0.054 | -0.236 -0.082 -0.006 0.001 0.001

100 0.0 | 0.816 0.615 0.380 0.189 0.062 -0.315  -0.027 0.037 -0.058  0.006
100 0.1 | -0.529 0.010 0.034 -0.003 -0.018 | -0.778 0.466 -0.319 0.213 -0.136
100 0.2 | -0.578 0.113  -0.052  0.007 0.026 | -0.767 0.430 -0.257 0.149  -0.099
100 0.3 | -0.539  0.044 0.024 -0.044 0.024 | -0.745 0.383 -0.209 0.116 -0.070
100 0.4 | -0.484 -0.021  0.001 0.014 -0.030 | -0.694 0.275 -0.108 0.045 -0.027
100 0.5 | -0.419 -0.071 -0.012 0.005 -0.003 | -0.624 0.163 -0.068 0.055 -0.045

Table 2: Returns autocorrelation coefficients for the Batch auction and the book protocols.
The first 5 time lags are shown. Higher lags never yield significant correlation coeflicients.

Bold figures are statistically significant over two standard deviations.

5 Conclusions

The institutional arrangements governing trading mechanisms, we have shown, bear significant
influences upon price and quantity dynamics. Comparative empirical evidence hint at this
property. And this is robustly confirmed by inter-institutional comparisons based on our
multi-agent model of ‘artificial’ financial markets. Moreover, while each market mechanism
exerts its distinct impact on market dynamics, the actual properties of the latter stem from
the interactions between market set-ups and the ecologies of behaviours within the population
of agents.

Given these non-linear interactions between institutional structures and behavioural ecolo-
gies a puzzling issue regards the normative properties of different set-ups. For example, can
one identity robust criteria for “efficiency” in such heterogeneous worlds? This is indeed one

major research task on the agenda ahead.
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