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Abstract. In the recent years, diffusion models for interest rates became very pop-

ular. In this paper, we try to do a selection of a suitable diffusion model for the

Italian interest rates. Our data set is given by the yields on three-month BOT, from

1981 to 2001, for a total of 470 observations. We investigate among stochastic volatil-

ity models, paying more attention to affine models. Estimating diffusion models via

maximum likelihood, which would lead to efficiency, is usually unfeasible since the

transition density is not available. Recently it has been proposed a method of mo-

ments which gains full efficiency, hence its name of Efficient Method of Moments

(EMM); it selects the moments as the scores of an auxiliary model, to be computed

via simulation, thus EMM is suitable to diffusions whose transition density is un-

known, but which are convenient to simulate. The auxiliary model is selected among

a family of densities which spans the density space. As a by-product, EMM provides

diagnostics which are easy to compute and to interpret. We find evidence that one-

factor models are rejected, while a logarithmic specification of the volatility provides

the best fit to the data, in agreement with the findings on U.S. data. Moreover, we

provide evidence that this model allows a more flexible representation of the yield

curve.
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1. Introduction and Motivation

The modeling of the term structure of interest rates is one of the most challenging

research area in finance. It is nowadays common to model the term structure by

specifying the evolution of one primary state variable, the inherently unobservable

short, or instantaneous, or spot rate, which is allowed to depend on a given number of

state variables, typically Markov-type continuous time diffusions. If we denote by Yt

the Rd-valued state variable process, one of them being the spot rate, we will model it

as:

(1.1) dYt = µ(Yt, t; ρ)dt+ σ(Yt, t; ρ)dWt,

where µ(rt, t; ρ) and σ(rt, t; ρ) are respectively the drift and the diffusion of the process,

while Wt is a standard d−dimensional Brownian motion. The only condition on the

functions µ and σ is that they are such that a strong solution of (1.1) exists. Such

models are typically parametric models, i.e. they depend on a given set of parameters

ρ. In the recent years, much complicated interest rate models have been proposed in

this framework in order to deal with the observed empirical facts. This development

leaded to increasing sophistication of econometric techniques to estimate these increas-

ingly complex models1. The motivation underlying the need for sophistication is the

following: the general representation (1.1) is a continuous-time representation, while

observations are discretely sampled, e.g. in the form of fixed (daily, monthly) time-span

interval data. Thus, if we denote by {Pt(Yt), t = 1, . . . , n} the size-n observation set,

given the functions µ(Yt, t; ρ), σ(Yt, t; ρ) the parameter vector ρ could, in principle, be

estimated by maximum likelihood via the evaluation of the transition density in the

observed data points; as it is well known, such a procedure would lead to the most

efficient estimate. Unfortunately, with the exception of few not very flexible models,

the transition density of the process (1.1) is generally not analytically computable, and

even very difficult to compute numerically, thus efficient estimation cannot be achieved

by this standard technique2.

1Chapman and Pearson (2000) provide a review of the recent advancements in this field, while

Sundaresan (2000) reviews the benefits of using continuous-time models in many fields of finance,

among which interest rate modeling.
2A relevant exception to this rule is provided by affine models (Duffie and Kan, 1996). For affine

models, the transition density can be computed via the inversion of the characteristic function (Sin-

gleton, 2001), which has a convenient exponential-affine representation, with the only problem of the

curse of dimensionality. An example of this technique is provided in Mari and Renò (2001).
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To circumvent this difficulty, many techniques have been proposed in the lit-

erature. Ait-Sahalia (1996); Stanton (1997) approximate the transition density via

non-parametric densities, which asymptotically span the true density; Christensen,

Poulsen and Sorensen (2001) provide numerical recipes to solve the PDE associated

with the likelihood function; Brandt and Santa-Clara (2001); Pedersen (1995) compute

the transition density via simulation; Jacquier, Polson and Rossi (1994); Elerian, Chib

and Shephard (2001); Eraker (2001) adopt a Bayesian methodology. All these methods

approximate the true transition density in some way, thus achieving efficiency asymp-

totically, but their finite-sample properties are largely unknown; moreover, they are

often computationally intensive, sometimes prohibitively for multi-factor models. On

the other hand, the GMM method of Hansen (1982), which has been refined e.g. in

Conley et al. (1997), is simple to implement, but not efficient. Ingram and Lee (1991);

Duffie and Singleton (1993) develop a version of GMM whose moments are computed

via simulations; this approach turns out to be useful when the moments are hard to

compute, but its efficiency properties are unknown. Finally, Gallant and Tauchen

(1996) develop a GMM estimator by selecting the moment conditions as the scores of

an auxiliary model; these moments are computed via simulation, and if the auxiliary

model encompasses, in a sense that will be more clear later, the true (structural) model,

their method is as efficient as maximum likelihood: following these results, they named

their method Efficient Method of Moments (henceforth EMM).

The aim of this paper is to select a model which should be able to fit the Italian

time series of the short rate from 1981 to 2001. We will select among models of the

form (1.1); our models will differ from the choice of the parametric specifications of µ

and σ, which will be allowed to depend upon other Markov factors. To estimate these

models, in the sea of estimators previously quoted, we will use EMM. Our choice is

motivated essentially by two facts: the first is that, differently from other methods, a

carefully implemented EMM estimation gains full efficiency; the efficiency of EMM is

a well known theoretical and empirical fact. Second, EMM estimation provides, as a

by-product, a battery of diagnostic specification tests, which are very useful in making

selection among different models, which is exactly the aim of this paper.

EMM is now a well established method; other application on interest rate models

include Ahn, Dittmar and Gallant (2001); Andersen and Lund (1997a); Bansal and

Zhou (2001); Dai and Singleton (2000); Gallant and Tauchen (1998); Jensen (2000);
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Tauchen (1997). The method has also been used for estimating stock prices mod-

els (Andersen, Benzoni and Lund, 2001; Chernov et al., 2001; Craine, Lochstoer and

Syrtveit, 2000; Gallant, Hsu and Tauchen, 1999), currency models (Bansal et al., 1995;

Chung and Tauchen, 2001) and assessing the relation of stock prices with option prices

(Benzoni, 1999; Chernov and Ghysels, 2000; Jiang and van der Sluis, 1999). Our list

is extensive but not exhaustive. We remark that the main results on the interest rate

models have been obtained on U.S. data.

We will test different models of the Italian short rate in the spirit of Andersen

and Lund (1997a); Gallant and Tauchen (1998). We will start our search from one-

factor models. Previous work on estimation of interest rate diffusion models, however,

pointed out the fact that one-factor parameterizations are not able to express all the

information included in the interest rate data (Pearson and Sun (1994) is a celebrated

example). The main result of recent research on this subject is that at least a richer

volatility parameterization is needed to obtain a good fit of the observed time series. We

will then extend our model to multi-factor models, and look for the most parsimonious

representation of a diffusion model which embodies the statistical features of the Italian

data.

In our paper, we will do some simplifying assumptions. First, we will not specify

market prices of risk in the estimation step, while we will introduce them in order to

illustrate the consequences of our findings on yield curve modeling. Second, we will not

make any attempt of linking our models to macro-economic variables, as for example in

Piazzesi (2001). We clearly recognize the importance of incorporating news and macro-

economic facts in the model3, as the high interest rate level in the period 1979-1982

or the EMU transition in 1999, but we believe that a model which is free from these

instances, even if it has the flaw of not assessing thoroughly the economic significance

of the results, is simpler to implement for applications. From this perspective, our only

economic guidance will be the principle of absence of arbitrage. Our paper is structured

in the following way. The parameter vectors of the structural models are estimated

by finding the minimum of a chi-square criterion function, whose moments are the

scores of the auxiliary model, which are computed via a simulation-based numerical

approximation. This procedure and all its properties are illustrated in Section 2 where

we also compare EMM with other estimation methodologies. EMM consists of several

steps: in the first, usually referred to as projection, the time series is summarized

3On this topic, see Balduzzi, Elton and Green (2001); Fleming and Remolona (1999).
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through an auxiliary model. To specify it, we will use the SNP approach suggested by

Gallant and Tauchen (1989). We illustrate the projection step in Section 3 of this paper.

In the forth and in the fifth Section we illustrate results of the application respectively

of the SNP algorithm and of EMM on the Italian three-months BOT yields time series.

In Section 6, we briefly analyze the consequences of our results on yield curve modeling.

The last section reports the conclusions of our work.

2. The EMM estimator

In this Section, we briefly review the main properties of the EMM estimation

method; for a thorough review, see Gallant and Tauchen (2001c) and the references

therein.

2.1. Definition. The EMM estimation method starts with the need of an auxiliary

model which should nest the structural one to achieve asymptotic efficiency; then the

auxiliary model has to describe statistically the data in the most accurate way: the

guidelines of the choice of the auxiliary model will be illustrated in Section 3.

Let us assume that the (parametric) transition density of the auxiliary model is

given by f(yt|xt−1, θ), where θ denotes the parameter vector, xt−1 = (yt−1, . . . , yt−L) is a

vector of L past lagged values. On the other side, we denote the (parametric) transition

density of the structural model by p(yt|xt−1, ρ), where ρ denotes the true parameter

vector whose estimation is the aim of the whole procedure. By structural we mean that

p(yt|xt−1, ρ) is the true data generating process. Let us denote by ỹt, t = 1, . . . , n the

vector of the observations. If θ̃ is the maximum likelihood estimator of the auxiliary

model:

(2.1) θ̃ = argmaxθ

{
1

n

n∑

t=L+1

log[f(ỹt|x̃t−1, θ)]

}
,

then we have asymptotically (White, 1994):4

(2.2) θ̃ −→ θ∗ = argmaxθ

∫
log[f(yt|xt−1, θ)]p(yt, xt−1|ρ0)d(yt, xt−1)

The second member of equation (2.2) is the expected value, under the structural model

transition density, of the log-likelihood of the auxiliary model. Thus, if we define the

score function of the auxiliary model by:

(2.3) sf(yt, xt−1, θ) =
∂

∂θ
log f(yt|xt−1, θ)

4Let us recall that p(yt|xt−1, ρ) = p(yt,xt−1|ρ)
p(yt−1,xt−2|ρ) , where p(y, x|ρ) is the unconditional density.
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then from first order conditions we have asymptotically:

(2.4)

∫
sf(yt, xt−1, θ

∗)p(yt, xt−1|ρ0)d(yt, xt−1) = 0.

This equation has to be fulfilled by the true parameter vector ρ0 for any choice of the

auxiliary model.

The idea of the EMM estimator is to find the parameter vector ρ0 which satisfies

(2.4). The main difficulty is that the integral in (2.4) cannot be computed if p(y|x, ρ) is

not given; nevertheless in most cases we can simulate the score of the auxiliary model

by using a Monte Carlo numerical approximation based on the central limit theorem:

(2.5)
1

N

N∑

t=L+1

sf(ŷτ (ρ), x̂τ−1(ρ), θ̃) ' 0

where we denote by ŷ the simulated values from the structural model p(y|x, ρ). In

order to determine an estimate of ρ, it is not possible to directly solve the system (2.5)

if the length of θ is larger than the length of ρ, as it is usually the case. It is instead

straightforward to use the GMM method of Hansen (1982), by simulating the scores

of the auxiliary model. Thus the EMM estimator is:

(2.6) ρ̃ = argmin{m̂(ρ, θ̃)′Ĩ−1
n m̂(ρ, θ̃)}

where

(2.7) m̂(ρ, θ̃) =
1

N

N∑

τ=L+1

sf(ŷτ (ρ), x̂τ−1(ρ), θ̃)

(2.8) Ĩn = V ar

[
1√
n

n∑

t=L+1

sf(ỹt, x̃t−1, θ̃)

]
.

The variance-covariance matrix is also straightforward to compute:

(2.9) Σ̃ρ̃ =

[(
∂m(ρ̃, θ̃)

∂ρ

)′
Ĩ−1
n

(
∂m(ρ̃, θ̃)

∂ρ

)]−1

.

2.2. Properties. The main properties of the EMM estimator are thoroughly discussed

in Tauchen (1997) among others. First of all, ρ̃ is a consistent estimator of the param-

eter vector. Second, the EMM estimator has an asymptotic normal distribution, as a

consequence of the fact that θ̃ is a maximum likelihood estimator and that, therefore,

(2.10)
√
n(θ̃ − θ∗) −→ N (0, H−1IH−1)
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where H is the Hessian matrix of the log-likelihood function, while I is the Fisher

information matrix. Most important, if the auxiliary models nests the structural model,

EMM tends asymptotically to be as efficient as the maximum likelihood estimator

(Gallant and Long, 1995). Finally, it is useful to point out the fact that parameter

values that belong to instable or unacceptable regions of the parameter space cannot

minimize the chi-square function and consequently be the result of the estimation

process (Tauchen, 1997). This fact is illustrated in Andersen, Chung and Sorensen

(1999) by means of Monte Carlo experiments. It is suggested, instead, to check that θ̃

makes the auxiliary model stable.

2.3. Diagnostics. One crucial feature which makes EMM appealing for model esti-

mation and selection is the fact that it provides readily available diagnostics. Indeed,

under the null that the selected model is the true data generating process, the objective

function (2.6) is distributed asymptotically as a chi-square:

(2.11) n ·m(ρ̃, θ̃)′Ĩ−1
n m(ρ̃, θ̃) −→ χ2(lθ − lρ),

where lθ is the length of the vector of parameters of the auxiliary model, while lρ is the

length of the vector of parameters of the structural hypothetical model.

Therefore, computing the value of the objective function in ρ̃ and in θ̃ is a way

of overall testing the goodness of fit of the structural model that has been estimated.

Let us denote by Dρ the derivative operator of the with respect to ρ. I is again

the Fisher information matrix. Starting from the fact that, if the structural model is

the true data generating process, we have (Tauchen, 1997):

(2.12)
√
nm(ρ̃, θ̃) −→ N(0,

[
I −Dρ0(D′ρ0

I−1Dρ0)−1D′ρ0

]
),

then an other readily obtained diagnostic is provided by the following T-statistic:

(2.13) Tn =
{
diag

[
Ĩn − D̃ρ̃(D̃

′
ρ̃Ĩ
−1
n D̃ρ̃)

−1D̃′ρ̃

]}− 1
2 √

nm(ρ̃, θ̃).

which are asymptotically t−distributed. This statistic could be difficult to compute

because D̃′ρ̃ = ∂m(ρ̃,θ̃)
∂ρ′ needs to be estimated numerically. Simpler to compute, and thus

useful in intermediate optimization steps, is

(2.14) T̃n =
{
diag

[
Ĩn

]}− 1
2 √

nm(ρ̃, θ̃)

which are also asymptotically t−distributed and are called quasi t-ratios. High values

of the t−ratio (or quasi t−ratio) statistics for a given parameter would signal that the

model specification is not able to account for that auxiliary model parameter.
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2.4. Comparison with other methods. The EMM method of estimation could look

just as a development of the so-called indirect inference that was introduced by Gourier-

oux, Monfort, Renault (1993). The two estimators are, instead, different. The indirect

inference estimator is computed by solving the following optimization problem:

(2.15) ρ̂GMR = argmin
[
θ̂N (ρ)− θ̃

]′ [
H̃−1ĨnH̃

−1
]−1 [

θ̂N (ρ)− θ̃
]

where θ̃ is the maximum likelihood estimator of the auxiliary model, while θ̂N is the

maximum likelihood estimator that is found by simulating the log-likelihood starting

from a vector of parameters ρ:

(2.16) θ̂N (ρ) = argmax
1

N

N∑

t=L+1

log
[
f(ŷt(ρ)|{ŷt−τ}Lτ=1, θ)

]
.

and H̃ is an estimate of the Hessian matrix. It is clear that the method of indirect

inference is more computationally complex than EMM, since for each possible value

of ρ it has to solve a non-linear optimization problem for the simulated log-likelihood.

Moreover the method of Gourieroux, Monfort, Renault (1993) needs to estimate the

Hessian matrix at each step of the procedure, thus increasing the computational burden.

EMM is also different from the SMM method of Ingram and Lee (1991); Duffie

and Singleton (1993), which use simulation to compute the moments of the structural

model, which are compared via GMM to the realized moments. EMM, instead, selects

the moments as the scores of a suitely selected auxiliary model.

Many studies have been conduced to compare the properties of EMM with other

estimation techniques, especially GMM. Indeed, all the above results hold for infinite

samples, while for finite samples no results are available and one has to resort to Monte

Carlo experiments. Gallant and Tauchen (1999) stress the fact that it is not possible

to make direct comparison between indirect inference and EMM through Monte Carlo

simulation, because we can’t use the same auxiliary model for the two methods. If

we want to apply indirect inference we should select an easy to compute auxiliary

model because we have to maximize the likelihood repeatedly. EMM requires, instead,

the score generator to be a good approximation of the data distribution. On the other

hand, comparisons can be made between EMM and the class of procedures that Gallant

and Tauchen (1999) classify as CMM (Classical Method of Moments), which includes

the GMM estimator of Hansen (1982) and SMM.

These authors find that EMM is generally more efficient than CMM, a result

which is confirmed also by the analysis of Andersen, Chung and Sorensen (1999);
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Chumacero (1997); Zhou (2001) also in small samples (n = 500), which is particularly

interesting for our application, in which n = 470.5 Moreover EMM improves the strong

over-rejection bias of GMM, while improving the rejection of misspecified models (Zhou,

2001). Ad hoc choice of moment conditions is probably the main reason of under-

performance of GMM and SMM. In the framework of EMM, the weighting matrix

is simpler to compute because the scores of a well fitted auxiliary model should be

approximately orthogonal. Andersen, Chung and Sorensen (1999) show that the t-

statistics are well-behaved even in small samples. Regarding efficiency, the theoretical

result of Gallant and Long (1995) is confirmed by Andersen, Chung and Sorensen

(1999): they evaluate EMM efficiency for samples of different size and they verify that

asymptotically (n = 4000) EMM efficiency is very close to that of maximum-likelihood.

Finally, Michaelides and Ng (2000) find, again by means of a Monte Carlo study in the

context of the theory of storage, that EMM over-performs both indirect inference and

SMM.

In general, we conclude that if the transition density is known maximum likeli-

hood or quasi-maximum likelihood should be preferred with respect to EMM. In all

other cases EMM provides a reasonable alternative.

3. The SNP algorithm

Selecting an auxiliary model that resumes the statistical properties of the ob-

served data is the central condition for a good performance of EMM procedure.

The choice of the auxiliary model (sometimes referred to as projection), in fact,

is tightly connected to the efficiency of EMM. The transition density used in the pro-

jection should closely approximate the distribution of the data. In the best case, if

the auxiliary model encompasses the structural one, EMM is as efficient as maximum

likelihood (Gallant and Long, 1995). Gallant and Tauchen (1989) proposed to use in

this first step of the procedure an expanding class of conditional densities that they

call SNP (Semi Non Parametric). The name SNP stems from the fact that, even if no

a-priori hypothesis is done, the projection represents a process of selection among a

family of parametric functions. To describe this class of densities we will let the process

5In Andersen, Chung and Sorensen (1999) it is shown that in small samples, the fit of an over-

identified auxiliary model, as those used later in this paper, can be problematic since it often results in

crashes or spurious fitting. They advocate, instead, close-to or perfectly identified moments. Since we

don’t experience such a problem, and this result is not confirmed by Chumacero (1997); Zhou (2001),

we guess that this effect strongly depends on the properties of the structural model.
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of interest {yt}∞t=−∞ depend on an innovation {zt}∞t=−∞ via:

(3.1) yt = Rx · zt + µx,

where y, z and µx, the location function, are vectors of size M while Rx, the scale

function, is an M ×M upper triangular matrix. The density of the innovation can be

approximated through an Hermite expansion:6

(3.3) h(z) =
P 2(z)φ(z)∫
P 2(s)φ(s)ds

,

where P is the Hermite polynomial of degree K and φ is a standard Normal multi-

variate density. The polynomial is squared to guarantee a positive density. To obtain

the density of the original process y we just need to apply the change of variables

transformation rule:

(3.4) f(yt|xt−1, θ) =
P 2[R−1

x (yt − µx)]φ[R−1
x (yt − µx)]/|det(Rx)|∫

P (s)2φ(s)ds

where φ[R−1
x (yt− µx)]/|det(Rx)| is a Normal multivariate density, of argument y, with

mean µx and variance-covariance matrix Σx = Rx·R′x, K is the degree of the polynomial

P, while xt−1 is the vector of the past values of y. The parameter vector of this density,

θ, is estimated via maximum likelihood7.

An important property of the Hermite expansion, which makes it a good way

to approximate the data distribution, is that it represents a class of densities which

encompasses a lot of important statistical models. More precisely, if we indicate with

HK the domain of all SNP densities, for any choice of R and µ, in which the degree

of the P polynomial is K, the closure of the union H = ∪∞K=1HK under a weighted

Sobolev norm contains the density p(y|x, ρ) (Gallant and Tauchen, 1998). Moreover

under conditions easy to be verified SNP defines a consistent (Gallant and Nychka,

1987) estimator of the structural transition density p(y|x, ρ).

6This approach has its origin in the previous studies of Phillips (1983) who defines a function, called

ERA (Extended Rational Approximant), which takes the form:

(3.2) hERA(z) =
P 2(z)

Q2(z)
φ(z|µ,Σ).

7More precisely, to avoid negative densities induced by the numerics, we fit

(3.5) fK(yt|xt−1, θ) =
{P 2

K [R−1
x (yt − µx)] + ε0}φ[R−1

x (yt − µx)]/|det(Rx)|∫
P 2
K(s)φ(s)ds+ ε0

,

after setting ε0 = 1 · 10−5.
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After modeling the distribution of the residuals, we specify Rx and µx to introduce

dependence in the data. In particular we model µx as:

(3.6) µxt−1 = ψ0 + ψ1yt−1 + . . .+ ψLµyt−Lµ = ψ0 + Ψxt−1,

where xt−1 is the vector of the Lµ lagged values of each y variable. The conditional

heterogeneity of the stochastic process can be represented in the Hermite expansion by

introducing a dependence on P coefficients from yt−1. Following Gallant and Tauchen

(1989), the transition density f becomes:

(3.7) f(yt|xt−1, θ) =

[∑Kz
|α|=1 Aα(yt−1)R−1

x (yt − ψ1 −Ψxt−1)α
]2

nM(yt|µx,Σx)

∫ [∑Kz
|α|=1 Aα(yt−1)uα

]2

φ(u)du
,

with

(3.8) Aα(yt−1) =
Kx∑

|β|=0

Aαβy
β
t−1.

To achieve identification A00 is set equal to one. We introduce conditional heteroscedas-

ticity in the variance-covariance matrix Σx in the following way. Setting Rx as:

(3.9)
vech(Rx) = p0 +

∑Lr
i=1 Pi|yt−Lr+i − µxt−1−Lr+i

|
+
∑Lg

i=1 diag(Gi)vech(Rxt−1−Lg+i
).

where vech(R) is the vector obtained with all the upper triangular elements of R,

p0, Pi are vectors of length M(M + 1)/2, G(1) through G(Lg) are vectors of length

M(M + 1)/2, we obtain a model similar to the GARCH model of Bollerslev (1986)8.

In particular, if M is equal to one we can write

(3.11)
Rx = τ1 +

∑Lr
i=1 τa(i)|yt−Lr+i − µxt−1−Lr+i

|
+
∑Lg

i=1 τg(i)Rxt−1−Lg+i
.

We remark that the just defined SNP model is still easily estimated via maximum

likelihood.

8The absolute value in (3.9) is not differentiable and, for this reason, it is substituted with a

trigonometric approximation

(3.10) a(u) =

{
(|100u| − π

2 + 1)/100 |100u| ≥ π
2

(1− cos(100u))/100 |100u| < π
2
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Figure 1. The time series under study.

Applying the SNP algorithm means choosing a particular member of the class

of the Hermite expansion through a specification of Lµ, Lr, Lg, Kz, Kx. The auxiliary

model that we have just described is that proposed in Gallant and Tauchen (1989).

Andersen and Lund (1997a); Andersen, Benzoni and Lund (2001) use SNP in the pro-

jection step, but they parameterize the conditional variance via an E-GARCH spec-

ification (Nelson, 1991). Moreover they ask the auxiliary model to incorporate the

asymmetric volatility effect.

We finally point out the fact that the use of SNP is legitimated also by Monte

Carlo studies that have verified its properties, see e.g. Zhou (2001).

4. An application of SNP on Italian short interest rate time series

As described in the previous section, we will use the SNP algorithm to describe

our data, performing a selection among a parametric family of transition densities

whose maximum likelihood estimation is straightforward. The data set under study is

the time series of the yields on three-month zero coupon bond issued twice per month

by the Italian government (BOT, Buoni Ordinari del Tesoro), from September, 1981

to June 2001, for a total of 470 observations; we use the first 14 as a provision for

initial lags; the time series evolution is plotted in Figure 1. We take the yield on the

three-month yield as a proxy of the short rate, as it is common in many applications
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(Gallant and Tauchen, 1998; Andersen and Lund, 1997a), see Chapman and Pearson

(2001) for a discussion on the economic relevance of this choice. As it can be seen in

Figure 1, the time series under study is sharply decreasing during the period at our

disposal9

The choice of the SNP model, as described in Section 3, is done via the choice of

the parameters Lµ, Lg, Lr, Kz, Kx that define an AR(Lµ)−SNP −GARCH(Lr, Lg)−
P (Kz, Kx) model. Let us recall, in particular, that Kz is the degree of the rational

polynomial P in (3.3), while Kx is the maximum degree of each polynomial coefficient

Aα(yt−1) in (3.8). Several combinations of these parameters have been estimated10.

The goodness of the fit of a given model cannot be given simply by the maximum

likelihood:

(4.1) sn(θ̃) = − 1

n

n∑

t=(L+1)

log[f(ỹt|{ỹt−τ}Lτ=1, θ̃)],

since increasing the number of parameters always improves the value of the log-likelihood.

In order to introduce a penalty for over-parameterization, the usual technique is to con-

sider the Schwarz-Bayes, Akaike, Hannan and Quinn information criteria, defined as:

(4.2)

BIC = sn(θ̃) + 1
2
(pθ/n) log(n)

AIC = sn(θ̃) + pθ/n

HQC = sn(θ̃) + (pθ/n) log[log(n)]

where pθ is the dimension of the parameter vector θ. The auxiliary density is chosen

after considering the information criteria. Generally, it is not guaranteed that these

different criteria provide the same indication.

Table 1 summarizes the results for the best 15 models according to the most

popular BIC. In our case, the BIC criterion points towards 41160, while its second

choice is 41180 and its third choice is 41140. HQC would select again 41160, then

51180 and 41180. Finally, AIC would select 51180 as the first choice, and 41160, 41180

as the second and third choice. The tendency of AIC to select over-fitted auxiliary

9On the basis of the result of the Augmented Dickey Fuller test, we cannot reject the null hypothesis

of non stationarity at 95% confidence level (the test value is −2.2231, while the correspondent critical

value is −3.41). Nevertheless, in what follows, we will assume that our data are a sub-sample of a

stationary time series; for a colorful argument supporting this assumption see Cochrane (2001), p.

199.
10Instead of using a branching tree, which could lead to miss some possible combinations, we

preferred to estimate all the possible combinations, with 0 ≤ Lµ ≤ 5, 0 ≤ Lr, Lg ≤ 2, 1 ≤ Kz ≤ 8, 0 ≤
Kx ≤ 1
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models in small samples is well known, and has already been reported in the literature

(Andersen and Lund, 1997a). Then a natural choice would be 41160, which is selected

by the other two criteria, and it is the second choice of AIC. 11

Table 2 reports the parameter estimates, together with standard errors, for the

41160 model. All the parameters are highly significant, with the notable exceptions

of the lag-zero auto-regressive specification. Let us note that odd coefficients of the

Hermite polynomial have smaller t-statistics than even coefficients.

Few comments are in order. For all the best models, an high Lµ is found; the SNP-

GARCH(1,1) parameterization is sufficient to fit the heteroscedasticity of the data; Kz

is typically even (4, 6 or 8 are preferred); no need for heterogeneity is found (Kx = 0).

These result are in line with Andersen and Lund (1997a); Jensen (2000) who analyze

three-months Treasury bills, while are quite different from those in Gallant and Tauchen

(1998) on the same time series, and Tauchen (1997), who analyzes 30-days Eurodollar

interest rates. These authors use an ARCH parameterization instead of a GARCH-type

one, and subsequently find heterogeneity (Kx = 1) and low Lµ. Different specifications

of the scale functions cannot be directly compared. Anyway, Jensen (2000) finds that

the parsimonious GARCH(1,1) performs better than his best ARCH model, which is

an ARCH(12). On the other hand, Andersen, Chung and Sorensen (1999) find no

substantial difference between GARCH and EGARCH specification with parsimonious

models, especially in small samples.

As suggested in Gallant, Rossi and Tauchen (1992); Andersen and Lund (1997a),

we ran specification tests using Ljung-Box statistic for the residuals and the squared

residuals. The results on the best models, shown in Table 1, show that we were partially

able to remove serial correlation in the residuals, while we were fully successful in

removing serial correlation in the squared residuals.

Summarizing our results, the main features highlighted by the application of SNP

algorithm on the Italian time series are that it presents a quite strong autoregressive

component in the drift and persistence in volatility.

11Zhou (2001) suggests, via Monte Carlo evidence, to go beyond the first choice of BIC, since this

criterion tends to under-fit the model, especially in small samples; in our case, we could select 41180,

which is an unrestricted version of 41160. But the likelihood-ratio test value of these two nested

models is LR = 3.01 with 2 degrees of freedom, thus we cannot reject the nested model at the 95%

confidence level. On the other hand, the same test rejects 41140 with respect to 41160 (LR = 22.3

with 2 degrees of freedom).
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Table 1. Reports the best 15 models obtained according to BIC; the

first 5 columns report the parameterization, see the text; pθ is the number

of corresponding parameters; L is the likelihood; AIC, HQC, BIC denote

the information criteria (4.2); Ljung-Box reports the Ljung box statistics

for the residuals with p = 25, divided by 25−pθ. LB squared reports the

same for the squared residuals.

Lu Lg Lr Kz Kx pθ −2 logL AIC HQC BIC Ljung-Box LB squared

4 1 1 6 0 14 -1173.5546 -1.2561 -1.2312 -1.1928 4.8057 1.4373

4 1 1 8 0 16 -1176.5671 -1.2550 -1.2265 -1.1827 5.9123 1.7937

4 1 1 4 0 12 -1151.8760 -1.2367 -1.2153 -1.1825 4.1496 1.1040

5 1 1 8 0 17 -1182.4436 -1.2593 -1.2290 -1.1824 5.5182 1.5866

3 1 1 6 0 13 -1157.0710 -1.2402 -1.2171 -1.1814 5.8176 1.2328

5 1 1 4 0 13 -1155.1705 -1.2381 -1.2150 -1.1794 3.7765 1.0568

5 1 1 7 0 16 -1173.5551 -1.2517 -1.2232 -1.1794 4.9238 1.2913

4 1 1 7 0 15 -1166.9220 -1.2466 -1.2199 -1.1788 5.6800 1.3927

3 2 1 6 0 14 -1159.1259 -1.2403 -1.2153 -1.1770 6.0774 1.4107

4 2 1 8 0 17 -1177.0916 -1.2534 -1.2231 -1.1765 6.6962 1.9830

3 1 1 4 0 11 -1139.9414 -1.2258 -1.2062 -1.1761 4.9101 1.1548

4 1 1 5 0 13 -1151.9662 -1.2346 -1.2115 -1.1758 4.4756 1.1949

3 1 1 7 0 14 -1155.5575 -1.2364 -1.2114 -1.1731 6.8800 1.3486

5 1 1 5 0 14 -1155.2095 -1.2360 -1.2110 -1.1727 2.8329 7.4629

5 1 1 3 0 12 -1142.7600 -1.2267 -1.2053 -1.1725 3.2457 1.0509

5. EMM estimates of short rate diffusion models

In this section we estimate continuous-time diffusion models for the spot rate

via EMM: we first check if one-factor model are flexible enough to capture the main

properties of the Italian riskless bond yields; then we extend these models to multi-

factor one. For all our applications, the simulated scores are computed with N =

100, 000 draws, after discarding the first 1, 000 to avoid strong dependence upon the

arbitrary choice of the initial points. To simulate be-weekly observations, we simulate

24 observations per year, with 20 steps within two adjacent observations: we use an

explicit second-order weak scheme to make the continuous-time diffusion discrete.

5.1. One factor models. Merton (1973) model is the first representation of continuous-

time processes for the interest rate with Brownian motion disturbances. Now there’s

a rich specification of one-factor models, see Chan et al. (1992). We will concentrate
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Table 2. Reports the fit of the AR(4)−SNP−GARCH(1, 1)−P (6, 0)

SNP model selected as a statistical description of the data. The param-

eters value are obtained via Maximum Likelihood. Standard errors are

computed via OPG.

Parameter Estimate Standard Error t-statistic

A10 -0.18400 0.09345 -1.969

A20 -0.32189 0.06035 -5.334

A30 0.08086 0.03511 2.303

A40 0.07415 0.01722 4.307

A50 -0.00722 0.00344 -2.099

A60 -0.00406 0.00124 -3.284

ψ0 -0.00045 0.00577 -0.079

ψ4 0.15400 0.04203 3.664

ψ3 -0.37898 0.05480 -6.916

ψ2 0.17221 0.06745 2.553

ψ1 1.04785 0.04870 21.517

τ1 0.01423 0.00335 4.254

τa 0.36425 0.07256 5.020

τg 0.60637 0.07302 8.304

on two very popular one-factor models: the Vasicek (1977) model:

(5.1) drt = α(γ − rt)dt+ σdWt.

and the CIR (Cox, Ingersoll and Ross, 1985a,b) model:

(5.2) drt = α(γ − rt)dt+ σ
√
rtdWt.

These models are both mean-reverting processes; the difference is in the diffusion term;

while the Vasicek model has Gaussian innovation, thus allowing for negative interest

rates, the CIR model has a non-central chi-square transition density, which prevents the

spot rate from becoming negative. Moreover the CIR model gives a mathematical rep-

resentation of the so-called ‘level effect’: indeed empirically it is observed that volatility

increases with the level of interest rates. This property cannot clearly be observed in

the Vasicek model. Both these models owe their popularity to the nice property that

closed-form expressions for the transition density and bond prices are readily available.
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In what follows, we will also deal with the Chan et al. (1992) specification of one-factor

models, the so-called constant elasticity of variance (CEV) model:

(5.3) drt = α(γ − rt)dt+ σtr
ξ
tdWt.

An important feature of the selected one-factor models is that they present a

linear drift, a property which is now a topic of debate in the literature: while both Ait-

Sahalia (1996); Stanton (1997) advocate a strong non-linearity in the drift, Chapman

and Pearson (2000) show by Monte Carlo that this finding could depend on the fact

that finite sample properties of the estimators adopted are not the same as asymptotic

properties. The however do not conclude in favor of a linear drift, but just show that

the rejection in Ait-Sahalia (1996); Stanton (1997) is doubtful. In a recent study, also

Christensen, Poulsen and Sorensen (2001) reject a non-linear drift. Anyway, we will

hold a linear drift throughout all our models, since in our opinion our data sample

is too small to detect non-linearities in the drift12. The results of the estimates for

one-factor models are reported in Table 3. The CIR and Vasicek model has been

estimated through EMM several times on US short interest rate time series. In every

case (Tauchen, 1997; Andersen and Lund, 1997a; Gallant and Tauchen, 1998), they

have been firmly rejected. We confirm this result on the Italian time series, also if the

rejection is not so sharp: the χ2 for CIR is nearly 37, which is low when compared

with typical three-digits numbers obtained in similar studies: this is a consequence

of the smallness of our data sample. Anyway, both the one-factor model considered

are rejected. The long-run mean is estimated to be around 6-7%, while the mean-

reversion parameter is around 0.1: they are bot quite low, but it’s not surprising after

looking at the time series under study, which displays very slow mean reversion and

a decreasing shape. In order to assess the reliability of these results, we estimated

the CIR model via a linear regression, after discretizing the continuos-time model to

the first order, and via maximum likelihood, using the inversion of the characteristic

function suggested in Singleton (2001). Moreover, we compared our results to those

obtained by Barone, Cuoco and Zautzik (1991), who analyzed Italian bonds of different

maturities in the period 1984-1990, obtaining CIR estimates cross-sectionally. Table 4

shows the comparison: the estimates of the three parameters are reasonably the same

12Since non-linearities in the drift would be detected by rare extremely high or extremely low events,

Jones (2001) concludes that non-linearities cannot be detected even with the longest time series at

our disposal, the 5000 observations long T-bill daily time series. This issue, anyway, is yet an open

one.
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Table 3. One-factor model estimates.

Vasicek model

χ2(11) 37.511

Parameter Estimate 95% confidence interval

α 0.032 (0.019, 0.084)

γ 6.22 (3.28,8.34)

σ 1.15 (1.03, 1.29)

CIR model

χ2(11) 37.766

Parameter Estimate 95% confidence interval

α 0.1079 (0.1076, 0.1080)

γ 7.48 (7.47, 7.52)

σ 0.439 (0.438, 0.440)

CEV model

χ2(10) 36.237

Parameter Estimate 95% confidence interval

α 0.107 (0.103, 0.111)

γ 7.41 (7.30, 7.49)

σ 0.448 (0.438, 0.456)

ξ 0.493 (0.489, 0.505)

across different approaches; only the long-run mean estimated by Barone, Cuoco and

Zautzik (1991) is considerably higher, but only because they analized interest rates in a

period in which the interest rate level was higher. We then conclude that our estimates

are reliable, and they show that the considered one-factor model are not able to fit the

Italian data.

Extending to the CEV specification, no significant improvements in the chi-square

are observed. The parameter ξ has been estimated several times in the literature. In
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Table 4. Estimates for the CIR model parameters obtained via EMM

and different methods. The column naif reports estimates based on a naif

discretization of the continuous-time model. The maximum likelihood

estimate is obtained using the inversion of the characteristic function

(Singleton, 2001). The last column reports the estimates obtained cross-

sectionally by Barone, Cuoco and Zautzik (1991) using Italian bonds of

all maturities for the period 1984-1990, and they are averages of daily

estimates.

EMM naif Maximum Barone, Cuoco,

Likelihood Zautzik (1991)

α 0.1079 0.141 0.256 0.243

γ 7.48 4.63 6.08 11.897

σ 0.439 0.564 0.537 0.619

their seminal work, Chan et al. (1992) estimated it around 1.5 on U.S. data, this result

has been confirmed by Jones (2001); Conley et al. (1997), while Eraker (2001); Andersen

and Lund (1997a); Durham (2001); Christensen, Poulsen and Sorensen (2001) find ξ

to be much lower (around 0.7) and often not significantly different from the CIR value

of 0.5. In our study on Italian data, we estimate ξ to be 0.492, and not statistically

different from the CIR value.

Estimating one-factor models, we learned basically that other factors should be

added to have a richer and more realistic parameterization. This is also consistent with

the earlier finding of Litterman and Scheinkman (1991) that more factors are necessary

to explain the observed realizations of the yield curve.

We remark that for misspecified models, as this is the case according to the

χ2-test, it is not possible to do selection among different auxiliary models.

5.2. Two factor models. The need for multiple factors for the term structure has

been advocated to explain the failure of one-factor models, a failure which is confirmed

on the Italian short rate time series. We tried few specifications of two-factor models

by specifying a diffusion process for the volatility parameter σ. We remark that σ

plays a very different role in the CIR and Vasicek model, since the CIR model already

incorporates a stochastic volatility specification through the
√
r in the diffusion term.

We first tried the GARCH(1,1) continuous-time specification of Drost and Werker
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(1996), which is commonly used in applications describing the volatility of foreign

exchange rate and stock prices, see e.g. Barucci and Renò (2001). This leads to the

following two factor models, which we label GARCH-CIR:

drt = α(γ − rt)dt+ σ
√
rtdW1t

dσ2 = k(ω − σ2)dt+ λσ2
t dW2t

(5.4)

where W1t and W2t are independent Brownian motions, and GARCH-Vasicek:

drt = α(γ − rt)dt+ σdW1t

dσ2 = k(ω − σ2)dt+ λσ2
t dW2t

(5.5)

Volatility is parameterized as a mean-reverting process, a feature we will hold hence-

forth. Estimation results are reported in Table 5 and they show that the specifications

(5.4),(5.5) provide quite a poor description of our data. The GARCH-CIR model

doesn’t notably improve the fit of the series: the chi-square decrease from 37 to only

34. The same is true for the GARCH-Vasicek model, thus these models are disappoint-

ingly similar to their one-factor counterparts. The literature on U.S. data (Gallant and

Tauchen, 1998; Andersen and Lund, 1997a) suggests instead to use a logarithmic spec-

ification for the mean-reverting volatility evolution, that proposed by Nelson (1991).

With this model, remarkably good fits are obtained. Following their suggestion, we

estimate the following models, which we label LOG-CIR:

drt = α(γ − rt)dt+ σt
√
rtdW1t

d log σt = k(logω − log σt)dt+ λdW2t

(5.6)

where again W1t and W2t are independent Brownian motions, and LOG-VASICEK:

drt = α(γ − rt)dt+ σtdW1t

d log σt = k(logω − log σt)dt+ λdW2t

(5.7)

The results of the estimation process are reported in the Table 6. As for previous

studies, the specifications (5.6),(5.7) provide a remarkably good fit of the time series.

The χ2 is indeed very low, so the LOG-CIR model cannot be rejected, and there’s

no need for richer parameterization as in Andersen and Lund (1997a); Gallant and

Tauchen (1998).

This is an important result: we find a model which gives a reasonable description

of the data adding only two parameters to the one-factor counterparts. This finding

also confirms results obtained in the literature on discrete models, which indicate that

the EGARCH model has a performance superior to GARCH. On the other hand, this
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Table 5. Two-factor model estimates, with a GARCH specification of

the variance.

GARCH-CIR model

χ2(9) 34.774

Parameter Estimate 95% confidence interval

α 0.347 (0.326, 0.454)

γ 5.67 (5.59,6.18)

ω 0.236 (0.233, 0.238)

κ 10.86 (10.85, 13.20)

λ 1.05 (0.73, 1.12)

GARCH-Vasicek model

χ2(9) 34.719

Parameter Estimate 95% confidence interval

α 0.490 (0.487,0.491)

γ 5.73 (5.71,5.83)

ω 1.182 (1.179, 1.192)

κ 6.04 (6.02, 6.12)

λ 2.046 (2.033, 2.049)

kind of model does not have desirable analytical properties, which motivates keeping

on our research considering affine models.

Using a CEV specification instead of the CIR one does not improve notably the fit.

We find ξ = 0.336, but it is important to remark that, since both the CEV model and

the model with ξ = 0.5 are not rejected, we lack statistical power to detect differences

on ξ.

5.3. Extending in the affine class. Affine models for diffusions deserve a special

treatment, since, as shown in Duffie and Kan (1996), they provide closed form solutions

for bond and derivative pricing13 at the cost of solving a system of ordinary Riccati

13In order to get this result the specification of the market price of risk cannot be arbitrary, see

Duffee (2001); Dai and Singleton (2001).
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Table 6. Two-factor model estimates, with a logarithmic specification

of the variance.

LOG-CIR model

χ2(9) 13.998

Parameter Estimate 95% confidence interval

α 0.360 (0.359, 0.361)

γ 4.84 (4.82,4.85)

ω 0.4664 (0.4660, 0.4668)

κ 7.63 (7.59, 7.64)

λ 2.069 (2.067, 2.071)

LOG-Vasicek model

χ2(9) 31.678

Parameter Estimate 95% confidence interval

α 1.14 (1.11,1.24)

γ 6.69 (6.60,6.72)

ω 1.103 (1.091, 1.153)

κ 7.59 (7.57, 7.60)

λ 1.819 (1.811, 1.821)

LOG-CEV model

χ2(8) 12.957

Parameter Estimate 95% confidence interval

α 0.791 (0.787,0.793)

γ 6.06 (6.03,6.07)

ω 0.595 (0.592, 0.597)

κ 7.707 (7.699, 7.730)

λ 2.304 (2.303, 2.306)

ξ 0.336 (0.335, 0.338)
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differential equations, which can be solved with very fast, accurate and easily available

algorithms, while different models need the solution of a partial differential equation,

much harder to solve, even numerically. It is worth to note that CIR and Vasicek

model are affine models, that’s why a closed form solution exists.

We start by experimenting all the possible two-factor affine model. As a second

factor we can choose the mean, resulting in the AFFINE-MEAN model:

(5.8)
drt = α(γt − rt)dt+ σ

√
rtdW1t

dγt = θ(ν − γt)dt+ η
√
γtdW2t,

or the volatility, getting the AFFINE-VOL model:

(5.9)
drt = α(γ − rt)dt+

√
σtdW1t

dσt = k(ω − σt)dt+ λ
√
σtdW2t

which can be extended to account for correlation among Brownian motions:

(5.10)
drt = α(γ − rt)dt+

√
σtdW1t + ρσrλ

√
σtdW2t

dσt = k(ω − σt)dt+ λ
√
σtdW2t

Model (5.9) is the same as model (5.10) after setting ρσr = 0. Estimation results, shown

in Table 7, are not very encouraging. As for the GARCH models, the performance of

affine models is comparable to one-factor models, and there are no substantial differ-

ences in this failure if we use the mean as a second factor or the volatility. This finding

motivates extending our specification to three-factor models. Three-factor affine mod-

els have been proposed earlier by Balduzzi et al. (1996); Chen (1996), which were lead

by the empirical finding of Litterman and Scheinkman (1991). Also Dai and Singleton

(2000) find that three-factor models are necessary to obtain a reasonable model on

U.S. data. We then test the BDFS model of Balduzzi et al. (1996), but we find disap-

pointing results, as before. We then extend the BDFS model to allow for correlations

between Brownian motions, towards the maximal model A3,1 model in the sense of Dai

and Singleton (2000):14

(5.11)

drt = krv(ω − σt)dt+ α(γt − rt)dt+
√
σtdW1t + ρrsη

√
σtdW2t + ρrgζdW3t

dσt = λ(ω − σt)dt+ η
√
σtdW2t

dγt = ν(µ− γt)dt+ ζdW3t + ρgsη
√
σtdW2t + ρgr

√
σtdW1t

Results for this model are shown in Table 8. Even if twelve parameters have been

used the chi-square statistic is only around 23, and consequently the model is rejected.

14We cannot get the maximal model, because it has as many parameter as our SNP model
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Table 7. Two-factor affine model estimates.

AFFINE-VOL model

χ2(9) 33.388

Parameter Estimate 95% confidence interval

α 0.199 (0.091, 0.210)

γ 6.76 (6.63,6.88)

ω 1.450 (1.443, 1.457)

κ 2.55 (2.15, 2.61)

λ 0.933 (0.849, 0.941)

AFFINE-VOL model with correlation

χ2(8) 30.732

Parameter Estimate 95% confidence interval

α 0.180 (0.179,0.216)

γ 6.45 (6.34,6.58)

ω 1.455 (1.446, 1.465)

κ 2.46 (1.55, 2.59)

λ 0.909 (0.811, 0.923)

ρσr 0.0024 (-0.0022,0.0067)

AFFINE-MEAN model

χ2(9) 31.375

Parameter Estimate 95% confidence interval

α 0.260 (0.259,0.261)

γ 6.07 (6.04,6.09)

ν 4.694 (4.686, 4.707)

θ 9.71 (9.67, 9.75)

η 9.89 (9.82, 10.02)
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Table 8. Three-factor BDFS model estimates.

Extended BDFS model

χ2(6) 23.467

Parameter Estimate 95% confidence interval

krv 4.26 (-7.28, 10.39)

ω 0.44 (0.42,0.49)

α 3.95 (1.86,5.17)

ν 3.35 (3.20,3.54)

µ 4.13 (4.01,4.25)

λ 1.04 (0.70,1.12)

ρrg 0.49 (0.31, 0.66)

ζ 1.19 (0.83, 1.74)

ρrs 1.52 (1.45, 1.57)

η 0.6964 (0.6963, 0.6965)

ρgs -2.37 (-7.09, -0.67)

ρgr -3.27 (-5.55, -2.91)

We conclude that, differently with the findings of Dai and Singleton (2000) on

U.S. data, affine models, up to three-factors, are not able to provide a completely

satisfactory statistical description of the Italian data.

It is worth to look at the t−ratios statistics (2.13) obtained on the main estimated

models, which are reported in Table 9; in our case, they are not powerful enough to

make selection among models. Anyway, they provide a (non significant) indication of

the superior performance of the CIR-LOG model, since its t-ratios are systematically

lower.

6. Consequences for the yield curve

The yield curve brings information on the price of zero coupon bond as a function

of the maturity of the asset. Under the no-arbitrage hypothesis, there is at least one

probability measure Q under which, denoting by P (t, t+ h) the price of a zero coupon
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Table 9. T-ratios for the main estimated models.

Parameter CIR AFFINE-VOL CIR-LOG Extended BDFS

A10 -1.031 -1.521 -0.172 0.619

A20 0.966 0.456 0.474 3.079

A30 0.245 0.744 0.227 3.121

A40 1.251 0.713 0.384 1.707

A50 0.103 0.430 -0.191 1.657

A60 0.561 0.055 0.191 -0.03

ψ0 -0.357 -0.698 -0.267 -0.672

ψ4 1.580 1.290 0.267 0.990

ψ3 1.557 1.280 0.215 0.995

ψ2 1.425 1.129 0.138 1.080

ψ1 1.530 1.224 0.177 1.104

τ1 0.435 -0.392 0.020 -0.221

τa 0.704 0.237 0.750 0.869

τg 0.429 -0.131 0.444 -0.211

bond issued in t with maturity in t+ h:

(6.1) P (t, t+ h) = EQt

[
e−

∫ t+h
t rsds

]
,

where EQt denotes conditional expectation with respect to Q. Then the yield curve is

given by:

(6.2) f(t, h) =
logP (t, t+ h)

h
.

In this Section, we check if the logarithmic specification (5.6), which we found

to be the best among all the diffusion models tested, can account for the observed

yield curves. Indeed, one great operational problem of one-factor models like CIR and

Vasicek, is that they are not flexible enough to account for the empirical properties of

the observed yield curves; for example, they cannot reproduce the inverse hump which

is sometimes observed around the maturity of one year. This problem has also been

raised and studied by Andersen and Lund (1997b).

For the model (5.6), the yield curve can only be computed via Monte Carlo

simulations, since no closed formulas are available. Since in (6.1) the expected value

is computed under the risk neutral probability, it is necessary to modify the drift by
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introducing the market price of risk, obtaining the modified short-rate diffusion:

(6.3) drt = [µt(rt)− λrσt(rt)]dt+ σt(rt)dWt.

We have a bivariate diffusion, so we need two market prices of risk; following the

example of Andersen and Lund (1997b) we specify the market price of risk via λ1 =

−0.3
√
rt, λ2 = 0, i.e. we assume that the volatility risk is not priced and we choose

a negative λ1 to offset the convexity bias. It is worth to remark that our purpose

is merely illustrative, and we are not going to calibrate the market prices of risk on

observed yield curves, neither to test if the volatility risk is priced. The market price

of risk λ1 introduces the volatility into the drift of the short rate, thus allowing richer

dynamics.

Let us remark that the functional form of the yield curve at time t will depend

on the values of r(t) and σ(t). Given r and σ at time t, and the market prices of risk,

the yield curve (6.2) is completely specified, as a function of h, by the model.

We compute the yield curves for the model (5.6) with the parameter estimates in

Table 6, and the above mentioned specification of market prices of risk. We compute

them for several values of r in three different regimes: low volatility (log σ = −5.0),

intermediate volatility (log σ = 0.4) and high volatility (log σ = 1.0). The results,

shown respectively in Figures 2, 3, 4, show that the logarithmic specification provides

a wider flexibility than one-factor models to the functional form of the yield curve;

in particular they can account for the inverse hump at low maturities. From this

perspective, we conclude that the results in Andersen and Lund (1997b), who argue

that at least a three-factor model is necessary to model the yield curve dynamics, are

too stringent: a two-factor logarithmic model provides quite a reasonable modeling of

the yield curve.

7. Conclusions

In this work, we performed a horse-race between different diffusion models, with

the aim of describing the evolution of the Italian short rate. In particular, this is the

first application of EMM to Italian interest rate data.

In line with previous application to U.S. data (Tauchen, 1997; Andersen and

Lund, 1997a; Gallant and Tauchen, 1998), we find that one factor Vasicek and CIR

diffusion models are not flexible enough to represent all the statistical information that

is included in the Italian short rate time series.
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Figure 2. Yield curves for the model (5.6) with log σ = −5.0

Figure 3. Yield curves for the model (5.6) with log σ = 0.4

We find evidence that a logarithmic specification of the variance, together with

a CIR structure of the short rate volatility, is able to capture the main properties of

the data, and it cannot be rejected on the basis of the statistical analysis.
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Figure 4. Yield curves for the model (5.6) with log σ = 1.0

On the other hand, all the other diffusions considered fail to describe the data

according to the tests adopted. This is also true for affine models, which would be very

appealing since they provide analytical bond and derivative pricing.

We also show that the two-factor model proposed, with only two additional pa-

rameters with respect to the CIR model, is able to account for observed empirical

features of the yield curve which one-factor models are not able to.
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