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In studying individual consumption behavior, an important issue is the analysis of
the relation between commodity expenditure and income (or total expenditure). In
this paper we firstly review the more recent theoretical and empirical literature
attempting to: (i) derive theory-consistent demand systems models which are able
to account for empirically observed non-linearities in total expenditure; (ii) find out
whether there exist necessary and sufficient conditions on the across-households
distributions such that empirically obtained demand functions still preserve a
strong consistency between micro and macro parameters (e.g. consumption-income
elasticities). We then apply the techniques discussed in the first part of the paper
to the data generated by a computer-simulated model of consumption dynamics
presented in Aversi et al. (1999). We find that the model, under a large range of
parametrizations, is pretty well equipped to replicate most of the stylized facts
displayed by empirically observed consumption patterns, both cross-section and
across time.
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1 Introduction

In studying individual consumption behavior, one of the main goal is to analyze the

relationships between commodity expenditure and income or total expenditure (i.e. the well-known

Engel curves)1. This broad area of research has recently displayed a strong interest in two related

issues.

First, a lot of work has been done in deriving theory-consistent demand-systems models that

are able to account for recently collected empirical evidence on the shape of Engel curves. More

specifically, one is looking for systems of commodity expenditure (or demand) functions that (i) are

coherent with a standard utility-based framework, i.e. are generated – and constrained – by

households behaving as maximizers of some utility functions under budget constraints; and (ii) are

able to account for recent empirical evidence – stemming for expenditure data-driven investigations

– showing that standard linear logarithmic expenditure-share models2 are robust in describing the

observed behavior for certain classes of goods (such as food), but they should be generalized for

other goods (such as alcohol and clothing) so as to allow for non-linearities in total expenditure.

Second, from a more data-driven point of view, many efforts have been made in: (i)

developing statistical demand functions for (homogeneous groups of) commodities, e.g. relating the

(nominal or real) expenditure of consumers or households for a given commodity (or homogeneous

groups of them) to commodity prices and individual-specific variables as total expenditure or

income, household size, etc.; and in (ii) finding out necessary and sufficient conditions on the

across-households distributions of the relevant economic variables so that individual parameters are

consistent with aggregate parameters. For instance, one of the most interesting questions which this

kind of studies has attempted to answer has been the following: Are estimates of households’

income elasticity based on cross-section micro-data consistent with the estimates of global income

elasticity based on time-series macro-data ?

In these notes we will try to give a brief (and by no means exhaustive) description of the main

findings of these two related streams of research. In Section 2 and 3, after having set out a common

notation, we shall review some of the most interesting problems arising in assessing the shape of

Engel curves and in accounting for aggregation problems. Next, in Section 4, we will discuss some

                                                
1 Generally speaking, Engel curves studies take also into account household composition, while prices, consistently
with the specification of Marshallian demand functions, are treated as fixed, which is appropriate if one employs budget
survey of one year only. However, if panel data for a sufficient number of years are available, then the focus of the
analysis can be shifted to price effects as well, cf. Bierens and Pott-Buter (1990), Banks et al. (1997).
2 E.g. the Almost Ideal (AI) model of Deaton and Muellbauer (1980).
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applications to the model presented in Aversi et al. (1999). Finally, in Section 5, we will draw some

conclusions.

1.1 Notation

In order to illustrate in more details both empirical and theoretical results mentioned above, let us

start by defining a common notation.

Say we are given a time-series of repeated (cross-sectional) panel data

{xh,t , h=1,…,Ht;  zt  }t∈T, T∈IN,

where:

• h labels households (or individuals);

• xh,t is a vector of households-specific variables, containing, e.g.,

− qh,t
g = purchased quantity of goods g=1,…,G by household h in period t;

− ch,t
g = nominal expenditure in goods g=1,…,G by household h in period t;

− yh,t = nominal income – or total nominal expenditure3 – of household h in period t;

− sh,t = the size of household h in the period t;

• zt is a vector of aggregate variables as:

− current commodity prices, i.e. pt = (pt
1, pt

2, … , pt
G);

− the current overall price-index, generally indicated as a(pt);

− the total (or mean) nominal income (or expenditure) Yt, obtained averaging across

households h= 1, 2, …, Ht.

Furthermore, let wh,t
g = ch,t

g / yh,t  be the share of h’s total expenditure going to good g,       qh,t
g
  =

ch,t
g
  / a(pt) the household h’s real consumption of good g, mh,t = yh,t / a(pt) the real income – or total

expenditure – of household h and Mt the average real income or total expenditure. Finally, assume

that household h has an indirect utility function given by    V(yh,t, pt).

                                                
3 On the issue of using deflated income versus total expenditure in Engel-curve analyses cf. Bierens and Pott-Buter
(1990), section 3.
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2 Linear vs. Nonlinear Engel Curves

Since the seminal work of Engel (1895), the study of how commodity expenditure is affected by

income, prices and other relevant economic variable (both household specific or not)  has been

characterized by the trade-off between data-driven and theory-driven approaches4.

Indeed, as far as the problems of specification of the functional form and estimation of

systems of individual demand (or expenditure) functions are concerned, one can single out two

broad methodological strategies.

At one extreme, a totally empirical approach would imply fitting statistical models to cross-

section or time-series data and finding the ‘preferred’ ones according to a battery of econometric

tests involving functional form mispecification, normality, heteroscedasticity, etc. . By doing this,

one can either assume an a priori functional form (parametric estimates) or not (non-parametric

estimates). Moreover, one might also employ a different functional form for each commodity

expenditure equation. In any case, very few restrictions are needed ex ante, so that, provided that

the model does not display any evidence for mispecification and allows for meaningful testing, it is

possible to check ex post the plausibility of any theory of consumer behavior by performing

appropriate econometric test.

On the other hand, a theory-driven approach prescribes that the model employed in the

estimation of separate (or systems of) commodity demand functions should be consistent, generally

speaking, to some theory of household expenditure behavior. Specifically, as long as this theory is

the standard utility-based model of rational choice, one requires that (i) the functional form of

demand equations to be estimated is generated by constrained maximization of a well-defined

utility function; (ii) the unknown parameters involved in the estimation satisfy all induced

restrictions5.

For instance, earlier attempts to estimate separately individual demand functions    qh,t
g = fh,t

g

( yh,t; pt ) widely relied upon the desire of identify in a direct way income and price elasticities. As a

consequence, many scholars have tried to fit cross-section data by standard OLS with the simple

intuitive econometric model:

                                                
4 For complete reviews of the issues involved in demand analysis, see the surveys by Deaton (1986) and Blundell
(1988).
5 The assumptions underlying rational choice of the utility-based model imply, firstly, that the commodity demand
functions system must satisfy the adding-up property, i.e. as consumers maximize over a linear budget constraint,
budget shares wh,t

g must add up to one. Secondly, each demand function must be homogeneous (absence of money
illusion) i.e. fh,t

g (θ yh,t; θ pt ) = fh,t
g (yh,t; pt ), any θ∈ΙR. Thirdly, there must be symmetry in cross-price derivatives of

Hicksian demands. Finally, the Slutsky matrix must be negative semi-definite.
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log qh,t
g = αt

g + βt
0 log yh,t + ∑

=

γ
G

k
tk

g
k p

1
 ,log + εt

g . (1)

However, the correspondent deterministic specification of the log-linear functional form (1) – as

well as many other empirical functional forms for Engel curves (see e.g. Prais and Houthakker

(1955)) – does not completely satisfy the restrictions stemming from standard utility-based theory,

as adding up is never satisfied, while others (e.g. homogeneity) may only be checked ex-post or

imposed a priori.

It should be noted, in addition, that as long as demand functions for different commodities

are estimated separately, only homogeneity really matters6. In this vein, Stone (1954a) employs an

equivalent version of (1), enforcing homogeneity by appropriately restricting the coefficients to be

estimated. On the other hand, while one attempts to model the complete demand system, adding up,

symmetry and negative semi-definiteness of the Slutsky matrix become crucial as well in order to

have a theory-coherent setup. These three restrictions can be either enforced algebraically (see the

Linear Expenditure System developed by Stone (1954b)) or statistically (cf. the Rotterdam Model

by Theil (1965) and Barten (1977)7), leading to theory-consistent models employing log-linear

versions of (1). Moreover, one might take up a relatively milder approach – half a way between a

theory-driven and a data-driven approach – by using ‘flexible functional forms’8, i.e. by

approximate utility or cost functions by functional forms general enough ‘to be regarded as a

reasonable proxy for whatever the true unknown function may be’ (Deaton and Muellbauer, 1980,

p.74). In any cases, the estimation of both log-linear and trans-log demand systems lead to strong

rejections of theory-induced restrictions, suggesting, at the very least, a strong incoherence between

the functional forms employed in estimation and the prescriptions of the theory9.

Another data-driven model that has been extensively used in a cross-section setting is the so-

called Working-Leser share expenditure system (cf. Working (1943) and Leser (1963)), relating

budget shares to the log of households’ total expenditure:

wh,t
g = αt

g + βt
g log (yh,t) ,   g = 1, … , G , (2)

                                                
6 Moreover, modeling expenditure functions equation by equation allows one to vary the functional form, as well as the
explanatory variables, taking up this way a more data-driven approach.
7 An interesting feature of the Rotterdam model is that theoretical restrictions apply directly to the parameters of the
model (see Deaton and Muellbauer (1980)).
8 See e.g. the trans-logarithmic model of Christensen et al. (1975). Cf. also Diewert (1971) and Barnett (1983).
9 Cf. for instance Deaton (1986) and Deaton and Muellbauer (1980).
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where αt
g and βt

g can in principle be functions of prices. This specification, unlike (1), can be

seen to easily satisfy adding up provided that Σgαt
g
  = 1 and Σgβt

g
 = 0. Furthermore, Muellbauer

(1976) shows that a sufficient condition on individual preferences so as to yield expenditure shares

wh,t
g  as in (2) is that the log of the cost function is linear in utility, that is:

log ch ( u, pt ) = log h(pt) + u  ⋅ log k(pt) , (3)

for some functions h(pt) and k(pt), or, equivalently, that indirect utility is linear in log(yh,t).

Preferences displaying this specification has been called Price-Independent, Generalized

Logarithmic (PIGLOG).

However, in order to employ the Working-Leser form over repeated cross-section surveys

(e.g. in assessing the impact of indirect tax changes) and/or to use it in time-series analyses, one has

to give an equivalent formulation of (2) which takes explicitly into account the effects of relative

prices and real expenditure. This has been done by Deaton and Muellbauer (1980)10, who develop a

simple but widely employed econometrically testable model based on PIGLOG preferences, the so-

called Almost-Ideal (AI) demand system. They obtain an expenditure shares system linearly

relating the share of total expenditure in good g by household h at time t (wh,t
g 11) to the log of total

real expenditure – or real income – of household h at time t (mt) and the logs of commodity prices,

i.e.

wh
g = αg + ∑

=

γ
G

k
kgk p

1

log  + βg log 







)(pa

yh ,         g = 1, … , G. (4)

where the price-index has the trans-log form:

log a(p) = α0 +  Σk αk log pk + ½ Σk Σl ωkl ( log pk ) ⋅ ( log pl ), (5)

Testable specifications (4) and (5) can be derived from (2) and (3) by choosing h(p) and k(p) to be:

log h(p) = α0 +  Σk αk log pk + ½ Σk Σl γkl ( log pk ) ⋅ ( log pk )
(6)

log k(p) = β0 ∏
=

β
G

l
l

lp
1

                                                
10 See also the exactly aggregable Trans-Log model of Jorgenson et al. (1982).
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and by letting ωkl = ½ (γkl
 + γlk ). This model has many important features. First, it assumes that

expenditure shares are linear in the log of income alone. This implies that non-linear terms cannot

play any role, so that Engel curves are monotonic in utility and hence in total expenditures, see

Deaton and Muellbauer (1986). Second, provided that Σgαg = 1 and Σgβg = 0, adding up is preserved

as in the Working-Leser equations, see (2). Third, both homogeneity and symmetry of cross-price

derivatives of the Hicksian demands are satisfied, as long as Σk ωkl = Σl ωkl = 0 and γkl = γlk. Finally,

(4) is very close to be linear so that its statistical counterpart can be easily estimated by standard

OLS techniques, unlike previous examples as the Rotterdam model.

Despite its theory-consistency, however, the AI model has displayed evidence of

mispecification (e.g. omitted lagged variables). Moreover, and relatedly, homogeneity is almost

always strongly rejected.

Furthermore, recent empirical Engel curves studies point out that, albeit linear logarithmic

share models provide a robust description for certain classes of goods (e.g. food), further terms in

income are required for some expenditure share equations and, in particular, that the square of log

income always has a strong statistically significant role (cf. among others Hildenbrand (1994),

Bierens and Pott-Buter (1990), Hausman et al. (1995), Blundell et al. (1993), Härdle and Jerison

(1990), Banks et al. (1997)). This body of literature shares the common view that earlier attempts in

estimating household expenditure relations have strongly relied on a priori functional form for

utility or cost functions, often chosen on the basis of theoretical consistency and tractability rather

than plausibility. As Hausman et al. (1995) put it, ‘economic theory gives almost no general

guidance in specification of Engel curves’, other than imposing the restrictions on the parameters

discussed above. Consequently, they suggest a thoroughly data-driven approach, in which not only

the model is derived directly from the data, without restricting its functional form in the first place,

but the aim is to avoid any mispecifications by using non-parametric kernel approaches in

estimating expenditure functions (see Härdle (1990)).

The evidence stemming from these empirical contributions is nonetheless mixed. If, on the

one hand, Bierens and Pott-Buter (1990) find that data supports the linear Engel model over a wide

income range for the 1980 Dutch Budget Survey, Blundell and Ray (1984), on the other, reject that

functional form by testing Linear Expenditure systems (Stone (1954a)) against a class of non-linear

Engel curves. Moreover, Blundell et al. (1993) show that a simple quadratic extension of the Deaton

and Muellbauer’s (1980) ‘Almost Ideal’ model fits the cross-section micro data of the U.K. Family

Expenditure Survey (FES) data 1970-84 very well. These findings are confirmed by the results of

                                                                                                                                                           
11 In the following, we suppress the time subscripts in order to keep the notation as simple as possible. Our expressions
are intended to be valid for each time period t∈T.
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Hausman et al. (1995), who estimate a non-linear regression between household budget shares and

log of total expenditure, finding statistically significant coefficients for higher-order terms of yh,t.

Finally, Banks et al. (1997) exhibit strong evidence pointing out that ‘although the linear

formulation appears to provide a reasonable approximation for the food share curve, for some

groups, in particular alcohol and clothing, distinct non-linear behavior is evident…’ (Banks et al.,

1997, p.528-9)12.

As a result, further work has been recently done in order to develop demand systems which

are coherent with the latter empirical evidence while displaying consistency with standard utility

theory. Hence, they aim to move once again away from data-driven models, which, by definition,

are not sufficiently supported by a priori economic insights (see among others Gorman (1981),

Blundell et al. (1993), Banks et al. (1997)).

The starting point of these studies is the class of PIGLOG preferences (Muellbauer (1976))

which generate Engel curves for budget share looking like (2) and lead to the AI demand system

defined by eqs. (4), (5) and (6). An obvious parsimonious generalization of this setup involves

letting budget shares to be linearly affected by a finite number of smooth functions of log (mt) (e.g.

polynomials). A simple example of this extended class of expenditure shares functions is:

wh
g = αg + b0g(p) + ∑

=

L

j
hjjg mgb

1

)(log )(p , g = 1 , … , G (7)

where bjg(⋅), j=0,1,…,L are differentiable functions and gj(⋅) are polynomials in log (mh). Engel

curves like (7) are called ‘exactly nonlinearly aggregable’ since, calling µh,t = mh,t / Mt the total

expenditure share of household h, one has that the µh,t-weighted sum of budget shares wh,t
g
  yields

an aggregate budget share:

wt
g  = αt

g + b0,t
g(pt) + ∑ ∑

= =

µ
L

j
thjtht

g
tj mgb

1
 ,

H

1h
 , , )(log  )(p , (8)

                                                
12 Another interesting related result is that obtained by Härdle and Jerison (1990), who study how real Engel curves
(REC), relating quantity demanded and real total expenditure, vary over time. They find that: (i) REC for an aggregate
commodity do change over time, in that they shifts in the direction opposite to the change in the relative price index for
that aggregate commodity; (ii) the shapes of the non-parametrically estimated REC are remarkably stable over time.
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so that the aggregate Engel curve has the same coefficients of the individual ones13. Moreover, they

are sufficiently general to cover more specific cases as, e.g. Working-Leser and Deaton and

Muellbauer (1980) expenditure shares functions. Finally, an important and striking result about

demand systems (7) has been proved by Gorman (1981). He has shown that, if such equations are to

be theory-consistent, then the rank of the G×(L+1) matrix whose generic row is [αt
g + b0,t

g(pt) :

b1,t
g(pt) : … : bL,t

g(pt)] must be no higher than 3. This basically means that ‘the quadratic case is as

general as we can go’ (Deaton (1981, p.3)). In this connection, Hausman et al. (1995) and Banks et

al. (1997) find empirical evidence agreeing with the Gorman’s rank-3 result. By testing the simple

case L=2 and gj(log mh,t) = log mh,t, they are able to conclude that there would be little or no gain in

adding extra terms to the equation:

wh,t
g  = αt

g + b0,t
g(pt) + b1,t

g(pt) log mh,t + b2,t
g(pt) [log mh,t]2 . (9)

More generally, Banks et al. (1997) show that all (exactly nonlinearly aggregable) demand

systems as:

wh,t
g  = αt

g + b0,t
g(pt) + b1,t

g(pt) log mh,t + b2,t
g(pt) g ( mh,t ), (10)

that are derived by utility maximization, either have (i) rank less than 3 (i.e. b2,t
g(pt) ∝ b1,t

g(pt)) or

(ii) they have rank 3 – according to Gorman’s result – and they are generated by indirect utility

functions of the form:

log V(yh,t, pt) = 












λ+






 − −

)(
)(

)(loglog 1
 ,

t
t

t p
p

p
d

ay th (11)

where λ(pt) is a differentiable, homogeneous of degree 0 function14. Interestingly enough, Banks et

al. (1997) also prove that: (a) all rank-3, exactly aggregable, utility derived demand systems (10)

have g(mh,t)=[log (mh,t)]2 and (b) no rank-3, exactly aggregable, utility derived demand systems (10)

exists that has both b1,t
g(pt) and b2,t

g(pt) independent of prices. The fact that the rank-3 condition

forces g(⋅) to be log2(⋅), and that (10) can be derived by standard utility maximization, is of a great

                                                
13 Hence, provided that one is able to construct the quantity Σh µh,t ⋅ gj (log mh,t) at each t, the relevant estimates can be
recovered by time-series data alone, as long as gj (log mh,t) do not contain any unknown parameters.
14 Notice that if λ(pt) were 0, then the indirect utility function would be that of a PIGLOG demand system. Moreover,
when λ(pt)=λ, then (4) is observationally equivalent to the PIGLOG class.
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importance, as empirical evidence suggest that rank-3 is the case arising in practice for many

commodities, while the linear case arises in the remaining situations. Finally, unlike previous

results, the fact that quadratic expenditure shares must have price-dependent coefficients in order to

be theory-consistent, permits goods to be luxuries at some income levels and necessities at others.

By choosing appropriate specifications for λ(pt) and d(pt), Banks et al. (1997) obtain a data-

coherent and theory-consistent demand system (QUAIDS) which nest the AI model while

simultaneously allowing for quadratic Engel curves. Indeed, given the form of V as in (11), and

applying the Roy’s identity, the share equations become:

wh,t
g  = αt

g + [ ]2
 , ,

1
 t, log

)(
log  log th

g
thg

G

k
k

g
k m

d
mp

p
λ

+β+γ∑
=

(12)

The estimation of (12)15 employing the U.K. FES for the period 1970-86 shows that the

QUAIDS model fits the data very well. First, no evidence for mispecification is found, suggesting

that no further terms but the quadratic ones are really required. Second, one can capture both the

linear and the quadratic shape of empirically observed Engel curves16.

3 Individual vs. Aggregate Statistical Expenditure Functions

Another important issue in empirical studies of consumption concerns the explanation of

observed inconsistencies between the cross-section estimates of the parameters underlying micro-

equations modeling individual behavior, on the one hand, and the time-series estimates of the

parameters characterizing macro-equations modeling aggregate variables, on the other (cf. Deaton

(1992)).

The ‘ideal’ case often envisaged by standard economic theory is that of ‘exact aggregation’,

where one can treat aggregate consumer behavior as it were the outcome of the consumption

                                                
15 Given the conditional linearity of (12), an iterative two-stage procedure is employed by Banks et al. (1997), who also
use a generalized method of moments in order to cope with endogeneity of expenditure, measurement error and non-
normality. Moreover, they also take into account restrictions in parameters stemming from regularity conditions as
Slutsky symmetry. Inequality constraints and negative semi-definiteness of the Slutsky matrix are also tested but they
are not considered as restrictions in the estimation procedure.
16 This results also have strong implications for welfare analysis. As Banks et al. (1997) put it, ‘studies based on AI or
translog preferences will badly specify the distribution of welfare losses by failing to model Engel curvature correctly’.
Moreover, as in general both empirical and theoretical findings show that Engel curves are not monotonic in utility for
many commodities, one cannot use the expenditure in such goods to measure welfare, as high or low-income
households could in principle exhibit the same budget shares.
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decisions of a representative individual. However, as we will see below, the required conditions for

‘exact aggregation’ are very stringent.

In more general terms, one can start by postulating that household h’s consumption behavior,

say expenditure for a given good in period t, is determined by both individual-specific variables

(e.g. income, wealth, household size and other demographic characteristics) and economy-wide

ones (e.g. relative prices). Let us rule out for simplicity the cases in which the past (i.e. lagged

terms) and/or the future (i.e. expectations) influence today’s behaviors. Then period-t household

demand can be written as:

ch,t = fh,t ( xh,t , zt ; θt ) ,  h = 1, …, Ht  , (13)

where the shape of the expenditure function f is allowed to vary both through time and across

households. Exact aggregation is possible if some function gt exists such that, labeling with Ct and

Xt the aggregate variable obtained by averaging out household-specific variables, it holds that:

Ct = 
tH

1
Σh fh,t ( xh,t , zt ; θt ) = gt (Xt , zt ; θ). (13’)

This requirement is so stringent that no general functions gt will in general exist at all, so that

one must restrict himself to special cases as the linear one or the ‘Gorman polar form’ (see Section

3.2 below for some more details).

The deterministic models (13) can be straightforwardly modified so as to allow for

econometric testing and (cross-section) household panel data (where demand is replaced by actual

consumption) may be employed to assess the impact that individual specific variables have on

household consumption. As a simple example, one might test, at any t, a cross-section linear model

such as:

ch,t = ft(xh,t ; θt) = θt’ xh,t + εh ,  h = 1, …, Ht  , where εh ∼ N ( 0 , σε
2). (14)

On the other hand, one can also postulate that an aggregate relation holds between average (or total)

consumption, average household-specific variables and economy-wide ones (say, prices):

Ct = G ( Xt , zt ; θ ), t = 1, 2, … . (15)
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Consequently, one might test a time-series model based on (15) to see whether (and to what

extent) aggregates (or average) of individual-specific variables (e.g. average consumption for a

certain good, average household income, average household size, etc.) are related to economy-wide

variables (e.g. commodity prices, etc.). A straightforward example is the linear time-series model:

Ct = θ’ Xt  + β’ zt + ηt  t = 1, 2, … . , where ηt ∼ N ( 0 , ση
2). (16)

In general, as the distributions of household specific variables (ch,t ; xh,t) change through time,

one cannot expect ft ≡ G and θt ≡ θ, all t. Hence, if one attempts e.g. to estimate econometrically

testable versions of (13) and (15) by imposing an a priori functional-form equivalence,

mispecifications are likely to arise. Furthermore, even though the models are well-specified, any

interpretation of the aggregate parameters as microeconomic parameters would be inappropriate, so

that one might not in principle ‘pool’ cross-sectional and time-series data to develop statistical

demand functions for any commodity. As an example, one might not be sure that estimates of θt and

θ one gets by the cross-section regressions (14) and by the time-series regression (16) are mutually

consistent.

To fix the ideas, let us focus on the simple case, widely analyzed in the literature, wherein

family food consumption is considered. It is a standard assumption in this case to start with xh,t = {

yh,t ; sh,t } and zt = pt. Since Tobin (1950), the principal aim of this body of research has been to

develop an aggregate statistical demand function for food employing both (micro) cross-section and

(macro) time-series data. In particular, Tobin (1950) gave a set of sufficient conditions under which:

(i) aggregation leads to ft ≡ G; (ii) long-run relationships can be estimated from cross-sectional data

sets. Hence, under these conditions, macro-parameters (e.g. food consumption/income elasticity

estimated on time series aggregates) can be interpreted as micro-economic parameters (e.g. cross-

section estimates of household food consumption/income elasticity), as the two sets are

theoretically the same.

However, Tobin (1950) simply assumed that these conditions were satisfied. More generally,

one would like to have testable conditions under which aggregation leads to mutually consistent

(and interpretable) cross-section (i.e. household specific) and time-series (i.e. aggregate) estimates.

In the following, we will briefly recall some of the major causes that lead to such aggregation

problems. The focus will be on the simple models relating (individual or average) real food

consumption, (individual or average) real income, commodity prices and, possibly, (individual or

average) household size. Hence, the basic question we shall address will concern sufficient
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conditions under which household’s income elasticity (coming from cross-section estimation) and

aggregate income elasticity (coming from time-series regressions) are the same.

3.1 Aggregation and Functional Forms

The first obvious problem arising in comparing cross-section and time-series analyses concerns

the purported functional forms. Let us assume the following simple cross-section model relating

real food consumption and real total expenditure holds:

qh,t = f ( mh,t ; θt ) ,  h = 1, …, Ht  . (17)

The question here is whether the same specification relating consumption and income (e.g. linear,

log-linear, etc.) will also hold in the time-series aggregate setup, i.e. whether one can write:

Qt = f ( Mt ; θ ) ,  t = 1, 2, …  . (18)

Again, two approaches are available. One the one hand, a data-driven procedure would

suggest to find the best model in both cross-section and time-series settings, without imposing any a

priori functional form (i.e. without assuming a priori that the same specification will hold, more

generally, both in the household cross-section eq. (13) and in the aggregate time-series regression

(15)). Given a well-specified econometric model for a cross-section analysis (i.e. significant

variables, lags to be included, linear vs. nonlinear functional form, exogeneity assumptions, etc.),

then, one cannot be sure that a similar model is also well-specified in a time-series setting and,

accordingly, that e.g. micro and macro income elasticities will be the same. As noted by Deaton and

Muellbauer (1980, p.148), ‘… it is not neither necessarily, nor necessarily desirable, that

macroeconomic relations should replicate their microeconomic foundations so that exact

aggregation is possible. Indeed, to force them to do so often prevents a satisfactory derivation of

market relations at all.”

Nevertheless, an alternative approach widely employed in literature is that of exploring the

conditions under which a cross-section specification relating real consumption and real income will

result in the same functional form in the aggregate. The obvious candidate to satisfy this property is

the class of linear functional forms (see Stoker (1982) and (1980)), which however have not proved

themselves to be satisfying explanations for empirically observed data (see Section 2).
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More generally, any specifications such that in (7) will eventually lead to mutually consistent

parameters in cross-section and time-series setups modeling weighted averages of budget shares,

provided that the appropriate weighting system is available and one is able to construct the

correspondent aggregate (weighted average) variables (cf. Blundell et al. (1993)). The conditions on

the underlying individual utility functions so that this is possible (known as ‘exact non-linear

aggregation’) are much weaker than those required for exact linear aggregation. Moreover, when

the average representative expenditure level is independent of prices, one gets as a particular case

the PIGLOG preferences introduced in Section 2, which, among the other points of strength, allow

for straightforward and elegant modeling of demographic effects (see Deaton and Muellbauer

(1980)).

On the contrary, simple time-series log-linear models such as:

log Qt
 = α + β log Mt , (19)

although successfully employed in many studies, do not in general result from aggregating log-

linear cross-section household models:

log qh,t
 = αt + βt

 log mh,t , (20)

cf. Lewbel (1992). Furthermore, Stoker (1986) shows that if cross-sectional functional forms have

not the log-linear (or linear) specification, then the assumption that the time-series aggregate

relationship also have the log-linear (or linear) specification (19) leads to biases due to omitted

variables. The aggregate specification has in this case a functional form quite different from the

micro one, as it usually contains other explanatory variables accounting for underlying changes in

the moments of cross-sectional distributions and for additional lags. Hence, if one attempts to

estimates (20) with time-series data, some further conditions are required in order to interpret the

OLS estimate for β̂  as the households (average) income elasticity.

3.2 Aggregation with Log-Linear Models: Mean Scaling

As pointed out by Stoker (1986), the practice to interpret aggregate parameters estimated on

time-series regressions as individual-specific parameters estimated in cross-section analyses (i.e. the

so-called representative individual or per-capita modeling approach) could lead to accurate

descriptions of economic behavior only if all marginal reactions of individual agents coincide, or,
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alternatively, if all individuals’ decisions are only affected by aggregate variables (i.e. exact linear

aggregation holds).

On the one hand, if all individuals have identical marginal propensities to spend on each of

the commodities (i.e. if aggregate demand for each good is not affected by changes in the cross-

section income distribution which do not change its mean), then one can easily write a relation

between average aggregate demand, average income and relative prices (parallel Engel curves). As

shown by Gorman (1959) and (1961), this condition can be satisfied if and only if individual cost

functions have the ‘Gorman polar form’17:

ch ( uh , pt ) = k’(pt) + uh  ⋅  k”(pt) . (21)

However, as Stoker (1986) points out, ‘this situation of “equal marginal effects” is […]

unrealistic for most macroeconomic problems, since it states that no individual differences will

affect marginal decisions, whether such differences affect needs, initial economic positions, or

whatever.” (Stoker, 1986, p.764)18

On the other hand, in presence of social imitation and heterogeneity in the cross-section

distributions of individual variables (and/or if the latter change through time), aggregation entails

serious problems. At the very least, the estimates of the parameters in the aggregate time-series

equations are not easy to interpret in terms of individual-specific ones.

Nevertheless, as far as log-linear functional forms are concerned, some (testable) restrictions

on individual behaviors’ distributions can be found so that elasticity estimates in the time-series

model coincide with their micro cross-section counterparts. Indeed, Lewbel (1992) shows that if

changes in the mean of the distribution of agents over time is independent of changes in the relative

distribution of agents, then no aggregation errors in log-linear models can arise. This condition,

known as ‘mean scaling’, includes as a special case the Hicks (1936) and Leontief (1936)

‘composite commodity theorem’ and can be formally stated in our case as follows. Let F ( mh,t ; Mt ,

ζ ) the distribution of real income (or real total expenditure) across agents at time t. Then F is ‘mean

scaled’ if:

F ( mh,t | Mt , ζt ) = )  |  
M
m

( F'
M
1

t
t

th,

t

ζ , (22)

                                                
17 Or, alternatively, preferences are ‘quasi-homothetic’, see Deaton and Muellbauer (1980).
18 See also Deaton (1986), Section 5, for an appraisal of some further ways of circumvent this problem.
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that is if changes in the parameters ζt are independent of Mt. This condition is also sufficient for

zero-problems in aggregation of more complicated log-linear models such as:

log qh,t
 = βt

 log mh,t +∑
=

β
n

j
log

2
jhtjt x  + rht , (23)

where xjht are other household-specific variables (e.g. family size and other demographic indicators)

and rht is any combination of additional parameters and variables (including a constant). In this case,

provided that Rt defined by:

log Qt
 = βt

 log Mt +∑
=

β
n

j
log

2
jtjt X  +  Rt , (24)

is independent of Xt over time for any point in the parameter space (i.e. provided that log-linear

aggregation exists), then if  F(mh,t, xh,t  | Mt , Xt , ξt ) = F* (mh,t, xh,t  |  ξt ), all aggregated elasticities

coincide with micro elasticities.

3.3 Other Causes of Aggregation Errors with Log-Linear Models

Even though simple log-linear models as in (19) and (20) are imposed a priori in micro and

macro regressions, and income is ‘mean-scaled’, there still can be other sources of aggregation

errors leading to inconsistent estimates of income elasticity.

In very general terms, one can single out two types of such causes. First, having constrained

our cross-section and time-series data to be explained by a log-linear model, various kinds of

mispecifications might arise. Second, even though the models are well-specified, our data might

display measurement errors which results in discrepancies between micro and macro elasticities

(see Izan (1980)), or, alternatively, the micro and macro data are not compatible in that they

measure different entities (see Tobin (1950)). In the following sub-sections, we will briefly recall

some sources of aggregation errors belonging to the first class.

3.3.1 Non-Linearities

Suppose we find, in accordance with empirical evidence summarized in Section 2, that our

preferred cross-section consumption function involves non-linear terms in (the log of real)
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household income. Then, as emphasized above, the correspondent preferred aggregate model

relating, say, average consumption and average income, will only as a particular case maintain the

same specification.

More in general, the presence of significant non-linearities in the micro-consumption function

will imply by itself inconsistencies between micro and macro estimates of income elasticity, even if

the income distribution appears to be ‘mean-scaled’.

In this vein, Anderson and Vahid (1997) reanalyze Tobin’s study (Tobin (1950)) finding strong

evidence for omitted variables in the cross-section log-linear specification. In particular, their

preferred model explaining household food consumption involves both the square of the log of

income and a multiplicative term such as (log mh,t)⋅ (log sh,t). Hence, they conclude that, at the very

least, the ‘best’ aggregate time-series model would probably contain quadratic and higher order

terms in log of income, as changes in the average log of income provides insufficient information

about how the distribution of the log of income affects the log of food consumption. Indeed, the

preferred long-run per capita and per-household equations are not log-linear, implying that the

estimates for aggregate income elasticity strongly differs from the micro one (see also Blundell et

al. (1993) for results along the same lines).

The lack of interpretability of a simple log-linear aggregate food consumption equation (or,

more in general, of an aggregate equation which has the same specification of the cross-section

household food expenditure function), raises the interesting theoretical question of what the implied

functional form of the aggregate relationship will look like given a well-defined non-linear micro

model. In this connection, it is possible to show that even if one starts from a simple ‘mean scaled’

distribution for individual variables (say, a Gamma distribution for income) and a simple micro-

model involving both the log of income and its square, then the aggregate theoretical food schedule

will involve additional non-linear terms and will in general be different from the micro expenditure

equation (see Anderson and Vahid (1997)).

3.3.2 Dynamics

Another source of aggregation errors concerns mispecification due to omitted dynamics in the

time-series model.

For instance, Tobin (1950), Chetty (1968) and Maddala (1971) estimated, with different

procedures, a long-run time-series inverse demand function for food relating the log of price index

a(pt) to the log of food consumption, the log of aggregate disposable income at time t and at time

t−1. However, Izan (1980) found strong evidence for auto-correlated residuals in all the above

mentioned analyses, which is often the case when the dynamical structure of the model is
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mispecified. More generally, a well-specified micro model explaining the cross-section variability

in households characteristics cannot be easily carried over in an aggregate time-series setup, as

probably the latter would require some lagged variables too. Hence, a better strategy is again a data-

driven one as that employed by Anderson and Vahid (1997) who estimated independently micro

(cross-section) and aggregate (time-series) models finding the preferred ones and comparing

elasticity measures. Anyway, their ‘best’ time-series specification does not involved lagged

variables, but evidence for structural breaks unable the authors to find a constant-parameter, log-

linear relationship between aggregate food consumption and aggregate income for the entire sample

period considered (i.e. 1941-1972).

3.3.3 Income Related Heteroscedasticity

In Section 3.2 we have seen that ‘mean scaling’ is a sufficient condition for the deterministic

log-linear micro model (23) to yield in the aggregate the log-linear macro model (24) with

interpretable parameters, provided that the residual term Rt is independent of the explanatory

variables (e.g. income).

Such kind of dependence can however arise in stochastic log-linear models when the

moments of the errors of the micro-relationship depend on income. Indeed, assume the simple

cross-section regression:

log qh,t
 = αt + βt

 log mh,t + εh,t  , (25)

and suppose that  there is income-dependent heteroscedasticity, i.e. that for some function κ, we

have  εh,t | mh,t ~ N ( 0 , κ (log mh,t) ). For example, if κ is itself log-linear, i.e.

κ (log mh,t) = ω0 + ω1 log mh,t    , ω1 ≠ 0 , (26)

then the ‘true’ aggregate elasticity stemming from (25) is given by βt+ω1/2 ≠ βt.

Hence, even though income distribution is mean scaled and the macro relation will still look

log-linear, the micro and macro elasticities will differ as long as some income dependence in the

moments of the cross-section noises. This source of aggregation problems in estimating income

elasticity appear to be more serious than so far suspected, as Anderson and Vahid (1997) find strong

evidence for income-related heteroscedasticity in the errors of the cross-section models based on the

U.S. budget surveys in 1950, 1960 and 1972, as well as in the 1980 and 1988 Dutch surveys. After

having controlled for this kind of heteroscedasticity, however, indication for non-linearities in
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income and household size led the authors to abandon the simple log-linear model (see also above).

As a consequence, when they estimate their preferred cross-section and time-series models

(involving nonlinearities in both the logs of income and household size), some interesting evidence

arises. First, the data reject the hypothesis that cross-section individual income elasticity keeps

constant across time. On the contrary, there is evidence that food consumption/income family

elasticity has increased, whereas its aggregate counterpart has declined. Second, the observed

departures from the simple log-linear model (in particular non-linearities and income-dependent

heteroscedasticity) lead to a strong inconsistency between the estimated individual and aggregate

income elasticity, the latter being in general less than the individual one. Finally, it appears that the

dispersion of income elasticity across household in a cross-section sample has increased over time.

4 An Applications to the Aversi et al. (1999) Model
 

 The model that presented in Aversi et al. (1999) might be considered as a sort of rudimentary

reduced form of a theory of consumption where purchase acts socially co-evolve with preference

structures and ‘lifestyles’, in a process ridden with decision inconsistencies and cognitive

dissonance, and in a precarious balance between path-dependent reproduction of habits and

exploration of novelties. Let us just sketch out here the basic elements of such reduced form (for a

thoroughly discussion cf. Dosi et al. (1999)).
 

4.1 Social Adaptation, Consumption Innovation and their Collective Outcomes: a Sketch of a
Model

The starting point are utterly simple agents whose (lexicographic) preference structure is

represented through a modified version of Genetic Algorithms (GA).

In essence, a GA is based on the reproduction and modification of information coded on strings

of finite length. In analogy with DNA coding, think of a sequentially ordered set of elements (genes

in the biological interpretation, demanded goods in the Aversi et al. (1999) model). Each element

can take two or more alternative forms (or alleles): in our model, straightforwardly, it can have two

states, 0 or 1, that is the good is either demanded or not by any one consumer. Hence, for example,

the string 01010 encodes the fact that the consumer is going to demand only - reading from left to

right - the second and the fourth good.

Strings in GA’s evolve through two operators, namely crossover and mutation. Crossover
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entails a recombination over two ‘parent’ strings. For example, given two strings, say,

01010

and

10011

a random draw of an integer K (in this case, 1 ≤ K ≤ 5)determine, so to speak, the ‘cutting point’

(say, 3). In this case the recombined strings will consist of the first three alleles of the first one and

the last two of the second one,

01011

and, vice-versa, for the second ‘child’:

10010

i.e. the first three of the second ‘parent’ and the last two of the first one.

Mutation involves the change of state of any one random element on the sequence (from 0 to 1

or vice-versa). In our model, mutation captures ‘innovative behaviors’ of each consumer (i.e. a new

good appears or disappears in the desired consumption basket), while crossover applied to the

strings of different agents is meant to account for the process of social imitation (… ‘I have come to

like something that you like, too…’).

In the standard formulation, strings are in turn selected over time according to their relative

‘fitness’ as revealed by the environmental payoffs that they obtain. This is not so in the model

described here. As already mentioned, there is no reason to think that some consumption pattern

may be intrinsically ‘better’ than another one, and, in any case, there is no collective mechanism

(thank God!!) to check it. Therefore, more technically, our GA’s evolve over a flat selection

landscape, solely driven by crossover and mutation. The death process (of strings) in our model is

only determined by the (time-lagged) effects of budget constraints (‘… once upon a time, I desired

to have a villa at Cap Ferrat, five servants and caviar every day… however, I have now forgotten all

that, and I am quite content with my little apartment and meat twice a week…’).
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For our purposes, GA’s provide a simple (albeit inevitably rough) account of an evolving

lexicographic order over the desired commodities, whose structure is indeed a proxy for the

‘lifestyle’ of the consumer. Needless to say, the model of consumer behaviour that we propose is

highly stylized and ‘abstract’ (although possibly as ‘abstract’ as the standard utility based model).

However, the assumptions that it incorporates are radically different from the latter in that it tries to

capture: (a) the social nature of preference formation; (b) the role of individual and collective

history; (c) the formation (and change) of consumption habits; and (d) the permanent possibility of

innovation. Contrary to the canonical decision model, we assume agents with extremely limited

computational capabilities, but with the possibility of ‘learning their preferences’ through the very

process by which they select their consumption patterns.

In our model, each consumer is fully defined by four strings, namely:

(i) the (hierarchically ordered) list of goods actually demanded;

(ii) the corresponding sequence of budget allocations;

(iii) the list of goods, if any, that one would have liked to acquire, but were not allowed to buy by

the budget constraint;

(iv) the corresponding sequence of ‘desired’ budget allocations.

We label the latter two strings frustrated memory of the consumer (which decays – i.e. is forgotten

– exponentially over time) and it captures the potential cognitive dissonance stemming from

exploratory behavior and social imitation (both possibly leading to phenomena like ‘…I wish but I

cannot…’).

Goods are grouped into categories, metaphorically standing for different basic functions, so

that – reading on the strings from left to right – one goes from ‘basic’ to more ‘luxury’ categories of

expenditures. All goods are non-durable and there is no saving in the economy (except for some

involuntary saving due to indivisibilities in the consumption basket). New goods arrive randomly

throughout the history of the economy and might or might not be adopted by any consumer (via the

mutation mechanism) and have a random price. Monetary incomes of consumers grow as a random

walk with drift.

The history of the economy starts with a population of identically poor consumers with

identical tastes. Consumption patterns endogenously diversify through time via income growth and

additions of new items to the individual consumption basket.

The model is explored via simulation and the typical iteration runs as follows.

Having acquired the new level of income at time t, any consumer faces four stochastic

alternative, namely:

a) leave unchanged the consumption basket in terms of expenditure shares;
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b) access to the frustrated memory and try to achieve the ‘desired’ pattern of consumption;

c) change one or few elements of its basket by ‘innovating’ (i.e. via the GA’s mutation operator);

d) change (part of) the consumption pattern by imitating another (randomly chosen) consumer

belonging to its same income cohort or to a higher one.

If the consumer draws one of the latter three alternative, it might however be unable to undertake

the target consumption, due to the budget constraint. In that case, it might try some local adjustment

algorithm (basically involving the variation of the desired quantities or, with lower probability, the

elimination of some pre-existing commodities in the basket). If also these adaptive adjustments fail

to match the budget constraint, the desired but unbought commodities transit into the frustrated

memory.

Despite its unrealistically simple structure, the model seems potentially able to capture some of

the ‘stylized facts’ discussed above. Moreover, precisely due to its reduced-form nature, it makes

for an easier exploration of its statistical properties under different parametrizations.

As already mentioned, the model endogenously generates differentiation in individual

consumption patterns, and, at the same time, entails processes of social imitation which prevents

such diversity from exploding. Although totally uniform initial conditions are assumed, as incomes

stochastically grow, both patterns of consumption and ‘preferences’ evolve in ways that are path-

dependent and socially embedded. Path dependency appears at two levels: first, the individual

consumption patterns at any time depend also on the sequence of past ‘preferences’ and

consumption acts; second, they indirectly depend on the whole collective history of the latter.

Relatedly, the social embeddedness of the dynamics is straightforward, in that tastes and revealed

purchasing patterns emerge from collective mechanisms of social imitation, which represent also

ordering mechanism, possibly accounting for the relative predictability of aggregate patterns over

time. Finally, the model allows the persistent exploration of new items of consumption – and,

through that, an everlasting evolution of ‘lifestyles’.

Given all that, an important ‘exercise in plausibility’ (although not a rigorous validation of the

model itself) is the statistical analysis of the patterns of consumption generated by the model.

4.2 Purposes of the Analyses

The goal of the exercises presented in the next sub-sections is two-fold. First, we will test simple

expenditure functions as (2) and (9) in a separate way for each commodity group g=1,2,…,5 – as

well as demand systems – to see what kind of non-linearities (if any) are displayed by the computer-

simulated data generated by our model. Second, we will look at aggregation problems discussed in
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Section 3. In particular, by testing simple log-linear models as (20), we will explore whether (i) the

distribution of log of income is mean-scaled; (ii) non-linear terms in the log of income are

statistically significant; (iii) income-related heteroscedasticity arises in modeling log of expenditure

for food-like commodities19. Finally, we will present some evidence about the evolution of

individual income elasticities over time.

All exercises presented in the following are very preliminary in that they refer to single

simulations and not to a Montecarlo sample of them (for a given parametrization). Then, they

should be considered as ‘spot’ examples of the typical behavior displayed by our model, since

additional results (not shown in this report) point out that the cross-section results summarized here

for a sub-sample of time periods appear to be robust across time (i.e. in repeated cross-section

analyses).

4.3 Cross-Section Analyses on Engel Curves Specifications

Following Banks et al. (1997), we firstly attempted to assess the shape of the Engel curve

relationships for different levels of aggregation over commodities. We considered two different

setups: (i) goods are aggregated in 5 commodity groups, g=1, 2, …, 5; (ii) goods are aggregated into

2 commodity groups (food, non-food). In each setup, we employed repeated cross-section,

simulated data for the sample period set T={100, 150, 200, …, 500}.

We started by both a parametric and non-parametric qualitative description of the Working-

Leser model. For every commodity group g, we considered cross-plots of expenditure shares vs. the

log of total individual (real) expenditure. Moreover, we fitted standard OLS regressions (lines and

polynomials) and non-parametric Kernel regressions (see Fig. 1(a)).

As a general pattern, one is likely to find a low correlation between budget shares and log of

income, due to the high dispersion of the clouds of points in the regression space. Despite that, in

both setups, inferior (respectively, superior) commodities tend to be negatively (respectively,

positively) correlated with log of income, as expected. Strong evidence for nonlinearities is

furthermore displayed by non-parametric Kernel regressions (in line with the results summarized in

Banks et al. (1997)), suggesting the need for higher order terms in the Engel curve relationships.

                                                
19 Recall that, in the Aversi et al. (1999) model, commodity group 1 can be considered as a metaphorical proxy for
‘necessities’, while higher-order groups contain goods that, being on the right-hand part of the consumption string, are,
in probability, ‘filled up’ after more basic necessities have been satisfied. In the following, we will then interpret
commodity group 1 (or aggregated data for groups 1 and 2) as ‘food’. Accordingly, commodities groups 2, 3, 4 and 5
(or aggregated data for groups 3, 4 and 5) as ‘non-food’.
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In order to give quantitative support to the latter results, we performed standard OLS cross-

section regressions by testing the two alternative specifications:

wh,t
g  = αt

g + b0,t
g(pt) + b1,t

g(pt) log mh,t + εh,t
g (27)

wh,t
g  = αt

g + b0,t
g(pt) + b1,t

g(pt) log mh,t + b2,t
g(pt) [log mh,t]2 + εh,t

g (28)

where t∈T, h=1,…,1000 and g=g1,g2 (either g1=1, g2 obtained by aggregating g=2,..,5; or

g1=1∪2, g2=3∪4∪5). An example of the typical results is reported in Table 1, where standard OLS

estimates for equations (27) and (28) are summarized. Although the R2s for all the cross-section

regressions are very low, both food-like and non-food-like expenditure shares display non-

linearities in the log of income. Tests for Autoregressive Conditional (ARCH) and Income

Dependent Heteroscedasticity (F-Test, not reported) failed to find any evidence for heteroscedastic

residuals. Nevertheless, functional form mispecification arise in all estimated log-linear models:

both the equivalent Reset F-test and LM tests –  performed to assess whether the variable [log mh,t]2

has been omitted – strongly reject the null hypothesis. However, once the square of the log of

income is introduced in the regression, no mispecifications are reported, even though the R2s still

remain very low. Finally, further nonlinear terms appear to be not significant in explaining budget

shares.

The foregoing results –  quite in tune with those obtained for empirical data by Banks et al.

(1997) – suggest, first, that non-linear terms (especially the square of the log of income) do indeed

matter in Engel curve specifications, and, secondly, that the Gorman’s Rank 3 assumption should be

satisfied by our computer-simulated data. This conjecture is indeed supported by jointly testing a

demand system for 4 out of the 5 commodity groups (avoiding singularity of the dependent

variables matrix) and employing χ2 statistics to test non-linear restrictions implied by the

determinants of the matrices of estimated parameters (not shown).

4.4 Cross-Section vs. Time-Series Analyses of Income Elasticity: Aggregation Errors

A second set of results in cross-section analyses concerns aggregation problems in the

estimation of individual vs. aggregate income elasticity. As discussed at length in Section 3, if we

start from the simple log-linear model (25), different sources of aggregation errors can

independently result in a lack of interpretation of time-series estimates, which basically become

meaningless as far as elasticities (i.e. Engel curves slopes) are concerned.
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In order to explore whether the cross-section distributions generated by our model also

display ‘aggregation errors’ as the empirically observed data do (see Anderson and Vahid (1997)),

we performed three kinds of analyses. In the following, we will report about them separately.

4.4.1 Mean Scaling

To assess whether the distribution of the log of (real) income is mean-scaled or not, we

performed two different kind of computations, as suggested by Lewbel (1992). Given a sufficiently

long time-period sample T, let sqt be the q-th quantile of the distribution of individual real income Y

at time t. Next, define by tY  and tY~ , respectively, the arithmetic and geometric average of the

time-t income distribution. Finally, let λqt= sqt /  tY  and ωt = tY / tY~ . It is easy to show that the

distribution of Yt is mean-scaled if and only if λqt and tY  are independent over time for every q.

Moreover, the condition that ωt and tY  are independent over time is necessary for the distribution

of Yt to be mean-scaled.

In our computations, we considered T=10, 20, 30, …, 500 and q=0.05, 0.10, … , 0.95. Then,

in order to test the independence over time of the pairs of time-series (λqt , tY ), for every q, and

( tY , tY~ ), we performed a t-test on the slope of the related linear regression (after having checked

for mispecifications). The results reported in Table 2 strongly rejects mean-scaling. This is in line

with the evidence reported by Lewbel (1992) about the income distribution in the U.S. Current

Population Reports data 1947-83 and allows one to conclude that, even though a log-linear model

relating consumption and income is assumed in cross-section regressions, the same specification

cannot arise from aggregation.

4.4.2 Non-linearities

As already emphasized in Section 4.2, non-linearities appear to characterize Engel curve

specifications also in the data generated by our model.

To further this analysis, we performed some cross-section regressions, estimating by OLS

the log-linear specification:

log Ch,t
g = αt

g + βt
g  log Yh,t + ε h,t

g , ε h,t
g
 ~ N (0, σ2) , (29)
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for g=1,2,…,5 and t∈{200, 250, 300, …, 500}. In Fig. 1(b) we show an example (period t=500) of

the cross-plots (log Ch,t
g , log Yh,t) for each commodity group. The shape of the cross-plots is robust

across-time and through different levels of aggregation over commodities. Moreover, in Table 3 we

report the results of the comparison of the regression for commodity group 1 (food) and that for all

other groups aggregated (non-food). Income elasticities are all significant and the R2 are very high.

However, the widespread, strong, evidence for functional-form mispecifications (cf. the large value

of the F test for omitted variables) suggests to include (at least) the square of log of income in the

regressions. As to other kind of mispecifications (not reported in Table 3), one often finds evidence

for non-normality.

After having introduced the additional explanatory variable (log Yh,t)2 in the regression (29),

RESET tests tend to fail to display functional form mispecifications – see Table 4. This is not

completely true for Group 1, suggesting that, after all, the linear specification for food-like

commodities Engel curves is not completely wrong (see Banks et al. (1997)).

4.4.3 Income-Dependent Heteroscedasticity

Another source of aggregation problems relies in income-dependent heteroscedasticity of the

errors in the cross-section regressions. To see whether it is the case, we considered the regression

(29) and we assumed that εh,t
g | Yh,t ~ N ( 0 , κ (log Yh,t) ). Then, we ran an auxiliary regression to

test whether the specification:

κ (log mh,t) = ω0 + ω1 log Yh,t + ω2 (log Yh,t)2 (30)

correctly explains the variance of the errors.

In general, income-related heteroscedasticity is often present both at different levels of

aggregation over commodities and across time (see Table 5), but one is more likely to observe it for

non-food-like commodities. This basic evidence is confirmed also when one performs the same

exercise for each separate commodity groups g=2, 3, 4 and 5.

4.4.4 Evolution of income elasticities over time

As reported by Anderson and Vahid (1997), there appears to be significant evidence that the

(average) individual income elasticity for food-like commodities has declined over time.

This empirical finding is robustly confirmed by the data generated by our model under different

parametrizations (see Figure 2). Moreover, our results also display a general tendency for increasing
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intercepts over time. However, this pattern of behavior is not so clear for other (higher) commodity

groups.

4.4.5 Aggregated Expenditure Schedules and Shares Equations: Time Series Analyses

The foregoing evidence on non-linearities, mean scaling and income-dependent

heteroscedasticity suggests two related considerations. First, finding a stable, constant parameter,

log-linear relationship between aggregate consumption or budget shares (at whatever level of

aggregation over commodities) and aggregate income appear to be a very difficult task, due to the

presence of basically all possible sources of aggregation errors in our simulated data (which is

however quite in line with empirical findings). Second, even if such a stable time-series model

indeed existed, the very interpretation of aggregate parameters in terms of the individual ones

would be inappropriate.

Even though any would-be aggregate time-series regularities would not be able to bear any

isomorphism with microscopic behavior, we have nevertheless attempted to explore whether

significant Engel-type patterns of evolution do indeed appear over time in consumption for different

commodity groups by performing two sets of analyses.

First, we estimated time-series models relating the levels of the (log of) consumption for

each commodity group to simultaneous and lagged values of: (i) log of (real) total expenditure; (ii)

commodity groups’ price-indexes20; (ii) powers of the log of real total expenditure. Second, we

considered as dependent variables budget shares of each commodity group.

In both cases, one has to face two important issues, namely that our data are characterized by

(i) endogeneity of consumption and income (i.e. total expenditure approximately equals total

income); and (ii) prices and income are exogenous (independent) stochastic processes, while, of

course, the series log Ct
g are not, because consumption choices in our model are taken

simultaneously. Therefore, one should model together the series {log Ct
g, g=1, …, 5} and assume –

by (ii) above – weak (and strong) exogeneity of both prices and (log of) income. However, because

of the identity between total expenditure and total income, one can only model simultaneously up to

four consumption series so as to avoid singularity of the matrices involved in the regressions. In the

following, we have chosen to model log Ct
g  and wt

g for g= 1, …, 4 (our main results hold

irrespective of that choice).

                                                
20 Unlike previously employed notation, in order not to complicate the exposition, we will label by pt

g the price-index of
commodities belonging to group g (not price levels).



27

The results reported in what follows are an example concerning the formulation, selection

and estimation of our preferred econometric models explaining the simulated data. Even though

they refer to a single-parametrization, single-simulation setup, they should be notwithstanding read

as an example of the general behavior displayed by the model under different parametrizations.

Indeed, preliminary Montecarlo time-series analyses performed under diverse parametrizations have

shown that the ensuing aggregate evidence is sufficiently robust to be understood as an ‘emergent

property’ of our model (see Lane (1993)).

We first considered an ‘as-general-as-possible’ VAR model relating consumption series to

their lagged values and other explanatory (exogenous, i.e. not explained in the model) variables of

the form:

Xt = ∑
=

−Π
k

j
jtj

1
X + ∑

=
−Γ

m

h
ht

0
h Y  +  εεεεt (31)

where Xt’ = (log Ct
1, log Ct

2, log Ct
3, log Ct

4) and Yt’ which contain a subset of the variables   (

logMt , log2Mt , log3Mt , ∆logMt , ∆log2Mt , ∆log3Mt …, pt
1, …, pt

5, ∆ pt
1, …, ∆pt

5, …).

As to non-stationarity, standard ADF test (both with constant and/or trend included) largely

accept the null of unit-root for {log Ct
g, g=1, …, 5}, see Table 6. On the other hand, logMt and

logYt are I(1) by assumption. Hence, all the analyses have been carried out by replacing Xt with

∆Xt, and employing as regressors ∆logMt (or ∆logYt).

In the Aversi et al. (1999) model, prices are generated by two alternative data generating

processes, namely (i) a stationary stochastic process (i.e. a noise added to a constant mean); (ii) a

non-stationary stochastic process (i.e. prices falling along with ‘learning curves’). The results we

present in this section are examples of the case in which price indexes are I(0).

As we have chosen to explain changes in the logs of nominal consumption with respect to

changes in the log of real income, we must consider changes (not levels) in price indexes to avoid

that the coefficients of pt
g and pt-1

g are equal in absolute value but opposite in sign. Indeed, as Yt =

Mt ⋅ a(pt), then the estimated coefficients of pt-1
g tend to capture also the variation of the price index

employed to deflate nominal income, and so to be equal to minus the coefficient of pt
g, because corr

{a(pt), pt
g } ~ 1, all g. However, results similar to those presented here can be obtained by

estimating a specification relating changes in log of consumption to changes in log of nominal

income and price-indexes levels.

As a general outcome, testing a VAR specification like (31) allows us to verify the general

structure of the data-generating process at an aggregate level. Indeed, our parsimonious-preferred
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model – given the I(1) specification for the log of consumption series – is a very simple one,

relating changes in (log of) consumption levels to changes in price indexes and changes in (log of)

real aggregate income, without any additional lagged variable being significant, i.e.:

∆log Ct
g = α + β ∆logMt + ∑

=

∆γ
5

1'

''

g

g
t

g p + εt (32)

The VAR model (see Table 7, (i) for estimation results) is the smaller one displaying no

mispecifications and providing a good description of the underlying relationships among variables,

as the battery of diagnostics tests (Table 7, (ii)) clearly shows. However, its explanatory power is

very limited in that it does not add any interesting knowledge about the model’s behavior. We

notice, indeed, that the four consumption series are not related one to the other: LM tests for

omitted variables do not reject the null that (lagged and simultaneous values of) ∆logCt
g’

significantly affects ∆logCt
g”, for g’≠ g”. Therefore, testing a VAR model is in this case equivalent

to a single-equation analysis.

On the contrary, large part of the variation of changes in consumption is captured by a quasi

unit-root in changes in income. This is not surprising as in our model there is no saving. All changes

in consumption are positively correlated with changes in price-indexes. Moreover, a χ2 test to test

whether the sum of the coefficients of price-indexes is equal to 1 does not in general reject the null.

The sign and size of price coefficients is probably due to a strong negative correlation between real

outcome and the overall price index a(pt). Indeed, as corr {a(pt), pt
g } ~ 1, all g, and Yt = Mt ⋅ a(pt),

then 0 << corr { logCt
g , log Yt } = corr { logCt

g , Mt ⋅ pt
g } so that corr { logCt

g ,  pt
g } >> 0. This

appears to be just a consequence of the kind of data employed in the model and does not help us in

explaining any emergent properties of the model. Other specifications concerning real vs. nominal

figures have been also estimated, but in all cases one cannot exactly separate real from nominal

components.

To overcome these difficulties, we estimated single-equations (as well as VAR models) with

budget shares as dependent variables. This has been done in order to assess whether long-term

changes in budget coefficients emerge –  driven by social innovation and imitation, jointly with

stochastically (exogenously) growing incomes – despite the extreme (and unrealistic) hypothesis

that, when consumers opt for the reproduction over time of their past consumption patterns, they do

so in a way that amounts to assuming a homothetic demand with unitary price elasticity.

All five budget shares appear to be stochastically non-stationary in the selected sample

simulation period (i.e. t=250, …, 500), as displayed by both Figure 3 (graphically) and standard
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ADF tests (Table 8). Therefore, all subsequent analyses have been carried out on budget shares’

differences. We estimated – both simultaneously and separately – models of the form:

∆wt
g
  =  α0 +∑∑

= =
− +∆α

k

i g

g
it

g
i w

1

5

1'

'' ∑∑
=

−
=

− ∆γ+∆β
m

h
jth

n

j
jtj py

00

log + [other terms] + εt.(33)

As a general result, we get (as before) that in the equation for ∆wt
g neither lagged terms of ∆wt

g

nor (contemporaneous and lagged) terms of ∆wt
g’, g’≠g, are statistically significant (i.e. αi

g’=0, all i

and g’≠g). Therefore, as happens in the previous exercise, one can revert to a single-equation

analysis, since both income and price indexes are (weakly and strongly) exogenous for the

parameters to be estimated.

Following a ‘general to specific’ modeling strategy, we can in general select preferred

models with no mispecifications displaying Engel-type patterns of evolution in the share of

different product groups. This type of dynamics appear more evidently in the case of group 1 and

group 5 (see figures on budget shares in the paper but also Fig.3 in this report). More rigorously, in

Table 9 two examples of OLS estimates of (34) are reported for commodity groups 1 and 5. Our

preferred expenditure schedules are of the form:

∆wt
g
  =  α0 +∑

=
− +∆α

k

i

g
it

g
i w

1
∑∑

=
−

=
− ∆γ+∆β

m

h
jth

n

j
jtj pm

00

log  + εt
g , (34)

or, employing nominal income and price-indexes levels:

∆wt
g
  =  α0 +∑

=
− +∆α

k

i

g
it

g
i w

1
∑∑

=
−

=
− γ+∆β

m

h
jth

n

j
jtj py

00

log  + εt
g , (35)

We found significant lagged values for both ∆logmt (resp. ∆logyt ) and ∆pt  (resp. pt) very far

from time t (even for the lags t−j, j>20), although our extreme assumptions and the stationarity of

the price generating process.

What is interesting is the significant effect of lagged incomes, yielding Engel-type patterns

which are purely an aggregate emergent property, driven by the collective exploration of new

consumption opportunities, together with the progressive relaxation of budget constraints.

As to the required dynamic specification, a dynamic analysis of the lag structure generally

suggests that the choice of k≅10, n≅20 and m≅10 is the one which optimally trades off the goodness
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of fit and correct specification. Solving for the static long-run equations allows us to get statistically

significant coefficients which have the ‘right’ expected sign. Moreover, a Wald test for the joint

significance of all the variables (excluding the constant) in the long-run solution (see Table 9)

strongly rejects the null, suggesting that in the long-run (i.e. when the means of the independent

variables have remained at a constant level for long enough and the dependent one have reached its

long-run solution) the influences of income and prices on budget shares are like the empirically

observed ones.

However, even after the dynamics has reached its static long-run solution, in the short-run

there appear to be a sort of cycles in the response of the change of budget shares to the impulses of

a change in (the log of) real income and price indexes. This can be clearly seen if we take a look at

the plots of the normalized lag weights (see Fig. 4 for an example concerning Group 1), which give

the responses of the dependent variable at time t+1, t+2, etc., when one slightly perturbs the level of

an explanatory variable at time t.

Tests on other simulation results conducted on the ‘version 2’ of price dynamics (i.e. price

falling along with ‘learning curves’), not shown here, show that, while in general Engel-type

patterns continue to emerge, prices (both the price index of the group in question and of the others)

appear to exert a significantly greater influence of the dynamics of budget shares (up to the fifth lag,

and mostly but not always with the expected sign). However, note that, again, this should be

considered as an emergent property which does not bear any isomorphism with microscopic

behavior: in fact, by construction, individual agents either have unit price elasticities when acting

‘business-as-usual’ or do not look at all at prices when imitating or innovating – except insofar as

prices affect budget constraints. Indeed, what appears in the aggregate as the dynamic influence of

prices upon shares rests in fat on the process by which the fall in the former help relaxing budget

constraints (a sort of dynamic version of an income effect) and that in turn makes easier innovation,

imitation and fulfillment of ‘frustrated’ options.

Moreover, in empirical time prices, one often detects evidence of important and generalized

structural breaks in the patterns of consumption within and across product groups (on the former, cf.

Combris (1992) and Anderson and Vahid (1997); more generally on changes in consumption

patterns, cf. Houttaker (1957) and (1965), Kuznets (1962), Gardes and Louvet (1986), Deaton and

Muellbauer (1980)). Remarkably, notwithstanding our rather rudimentary behavioral assumptions,

structural instability -–most often emerges when testing models as (34) and (35). When applying the

usual tests for structural stability (Chow, CUSUM, CUSUMSQ), one generally finds (especially

with regards to groups 1 and 5) significant structural changes, intertwined by rather long periods of

structural stability. At the risk of some over-interpretation, these patterns might suggest the easy



31

emergence of punctuated discontinuities in historically shaped, collectively shared, ‘models of

consumption’, which, however, display a ‘metastable’ character (in the sense that they persist on

time scales of orders of magnitude greater than those of the processes which generated them, but

nonetheless tend to vanish with probability one as time goes on).

5 Conclusions

In these notes we firstly attempted to provide a brief (and by no means exhaustive) survey of the

literature analyzing – both empirically and theoretically – the relationships between commodity

expenditure and income (or total expenditure). In particular, we reviewed studies trying to derive

theory-consistent demand-systems models that are able to account for recently collected empirical

evidence on the shape of Engel curves. Moreover, we discussed efforts made in developing

statistical demand functions for (homogeneous groups of) commodities and in finding out necessary

and sufficient conditions on the across-households distributions of the relevant economic variables

so that individual parameters are consistent with aggregate parameters.

Secondly, we employed data generated by the model presented in Aversi et al. (1999) to test

whether this formalization is able to capture some well-established stylized facts in consumption

behavior singled out by the above discussion. We find that he model generates patterns of diffusion

of new commodities displaying the usual S-shape generally observed in empirical studies.

Furthrmore, the dynamics of demand for individual commodities (and groups of them) shows the

familiar negative elasticity to prices, notwithstanding the absence of any notional ‘demand curve’

within the decision algorithm of individual consumers. In addition to all that, budget shares of

different commodity groups display Engel-type patterns of evolution over time, at macroscopic

level, even if, again, nothing of that sort is inbuilt with the microscopic description of how agents

evolve their consumption patterns over time. Finally, as in empirical time-series, also the statistics

generated by our model present evidence of structural breaks in the patterns of consumption within

and across product groups.
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  Table 1: OLS Regressions

1. Commodity Group g=1 vs. Other Goods

Modeling Commodity Group 1

Variable     Coefficient    Std.Error  t-value  t-prob
Constant         0.34038     0.032107   10.602  0.0000
LogY           -0.014446    0.0027304   -5.291  0.0000

R2 = 0.0272853
F(1,998) = 27.995 [0.0000]
σ = 0.0245054
RSS = 0.5993157973 for 2 variables and 1000 observations
AR 1- 2 F( 2,996) =     1.4293 [0.2400]
ARCH 1  F( 1,996) =    0.11711 [0.7323]
Normality Chi2(2)=      1.7256 [0.4220]
Xi

2      F( 2,995) =    0.12428 [0.8831]
RESET   F( 1,997) =     4.8094 [0.0285] **

Variable     Coefficient    Std.Error  t-value  t-prob
Constant         -1.8393      0.99441   -1.850  0.0647
LogY             0.35625      0.16905    2.107  0.0353
LogYSq          -0.015752    0.0071827   -2.193 0.0285  

R2 = 0.031955
F(2,997) = 16.455 [0.0000]
σ = 0.0244588 RSS = 0.5964386538 for 3 variables and 1000 observations
AR 1- 2 F( 2,995) =     1.3306 [0.2648]
ARCH 1  F( 1,995) =   0.069725 [0.7918]
Normality Chi2(2)=      1.3718 [0.5036]
Xi

2      F( 4,992) =   0.075916 [0.9896]
RESET   F( 1,996) =   0.087293 [0.7677]

Modeling Other Goods

Variable     Coefficient    Std.Error  t-value  t-prob
Constant         0.65962     0.032107   20.545  0.0000
LogY            0.014446    0.0027304    5.291  0.0000

R2 = 0.0272853
F(1,998) = 27.995 [0.0000]
σ = 0.0245054
RSS = 0.5993157992 for 2 variables and 1000 observations
AR 1- 2 F( 2,996) =     1.4293 [0.2400]
ARCH 1  F( 1,996) =    0.11711 [0.7323]
Normality Chi2(2)=      1.7256 [0.4220]
Xi

2     F( 2,995) =     0.12428 [0.8831]
RESET   F( 1,997) =     4.8102 [0.0285] *
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Variable     Coefficient    Std.Error  t-value  t-prob
Constant          2.8393      0.99441    2.855  0.0044
LogY            -0.35625      0.16905   -2.107  0.0353
LogYSq          0.015752    0.0071827    2.193  0.0285

R2 = 0.031955
F(2,997) = 16.455 [0.0000]
σ = 0.0244588
RSS = 0.5964386555 for 3 variables and 1000 observations
AR 1- 2 F( 2,995) =     1.3306 [0.2648]
ARCH 1  F( 1,995) =   0.069725 [0.7918]
Normality Chi2(2)=      1.3718 [0.5036]
Xi

2     F( 4,992) =    0.075916 [0.9896]
Xi*Xj    F( 5,991) =    0.40092 [0.8484]
RESET   F( 1,996) =   0.064755 [0.7992]

2. Food (Groups 1 and 2) vs. non-Food (Groups 3,  4 and 5)

Modeling Food

Variable     Coefficient    Std.Error  t-value  t-prob
Constant         0.55795     0.040546   13.761  0.0000
LogY           -0.017478    0.0034480   -5.069  0.0000

R2 = 0.025101  F(1,998) = 25.696 [0.0000]
σ = 0.0309468 RSS = 0.9557908475 for 2 variables and 1000 observations

AR 1- 2 F( 2,996) =   0.087195 [0.9165]
ARCH 1  F( 1,996) =     1.3868 [0.2392]
Normality Chi2(2)=      0.94589 [0.6232]
Xi

2      F( 2,995) =    0.67247 [0.5107]
RESET   F( 1,997) =     5.3045 [0.0215] **

Variable     Coefficient    Std.Error  t-value  t-prob       JHCSE  PartR^2
Constant         -2.3321       1.2555   -1.858  0.0635      1.2495  0.0034
LogY             0.47404      0.21344    2.221  0.0266     0.21262  0.0049
LogYSq         -0.020886    0.0090685   -2.303  0.0215   0.0090425  0.0053

R2 = 0.0302605
F(2,997) = 15.556 [0.0000]
σ = 0.0308803
RSS = 0.9507325206 for 3 variables and 1000 observations

AR 1- 2 F( 2,995) =   0.078782 [0.9242]
ARCH 1  F( 1,995) =     1.8712 [0.1716]
Normality Chi2(2) =     1.2526 [0.5346]
Xi

2      F( 4,992) =    0.64262 [0.6322]
Xi*Xj    F( 5,991) =     1.3313 [0.2485]
RESET   F( 1,996) =     2.5479 [0.1108]
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Modeling non-Food

Variable     Coefficient    Std.Error  t-value  t-prob       JHCSE PartR^2
Constant         0.44205     0.040546   10.903  0.0000    0.041830  0.1064
LogY            0.017478    0.0034480    5.069  0.0000   0.0035596  0.0251

R2 = 0.025101
F(1,998) = 25.696 [0.0000]
σ = 0.0309468
RSS = 0.9557908475 for 2 variables and 1000 observations
AR 1- 2 F( 2,996) =   0.087195 [0.9165]
ARCH 1  F( 1,996) =     1.3868 [0.2392]
Normality Chi2(2)=      0.94589 [0.6232]
Xi

2    F( 2,995) =      0.67247 [0.5107]
RESET   F( 1,997) =     5.3046 [0.0215] **

Variable     Coefficient    Std.Error  t-value  t-prob       JHCSE PartR^2
Constant          3.3321       1.2555    2.654  0.0081      1.2495  0.0070
LogY            -0.47404      0.21344   -2.221  0.0266     0.21262  0.0049
LogYSq          0.020886    0.0090685    2.303  0.0215   0.0090425  0.0053

R2 = 0.0302605
F(2,997) = 15.556 [0.0000]
σ = 0.0308803
RSS = 0.9507325206 for 3 variables and 1000 observations
AR 1- 2 F( 2,995) =   0.078782 [0.9242]
ARCH 1  F( 1,995) =     1.8712 [0.1716]
Normality Chi2(2)=      1.2526 [0.5346]
Xi

2      F( 4,992) =    0.64262 [0.6322]
Xi*Xj    F( 5,991) =     1.3312 [0.2485]
RESET   F( 1,996) =     2.4372 [0.1188]
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Table 2: Mean Scaling

a) Correlation Coefficients, Slopes and t-tests (with related 2-tail probabilities)
in the linear regression between λqt and tY

Quantile Correlation

Coefficients

Slope Interc t-test

(H0 : Slope=0)

t-prob

0.05 -0.48434 -0.02701 0.931281 -26.4454 2.87E-30

0.10 -0.49381 -0.0233 0.95172 -29.7429 1.4E-32

0.15 -0.48586 -0.02054 0.965446 -31.2597 1.44E-33

0.20 -0.48467 -0.01792 0.975194 -31.5544 9.4E-34

0.25 -0.50168 -0.01574 0.984421 -36.3622 1.36E-36

0.30 -0.5158 -0.01339 0.990982 -40.8192 6.27E-39

0.35 -0.50572 -0.0109 0.995992 -41.6818 2.36E-39

0.40 -0.5456 -0.00887 1.003407 -54.91 5.55E-45

0.45 -0.57435 -0.00667 1.008879 -43.11 4.88E-40

0.50 -0.64344 -0.00399 1.010857 -22.0775 8.71E-27

0.55 -0.7525 -0.0013 1.014056 -6.10536 1.73E-07

0.60 0.007196 0.001201 1.01882 4.644559 2.67E-05

0.65 0.362836 0.00375 1.024419 11.36428 3.27E-15

0.70 0.356507 0.006315 1.032558 14.48989 3.75E-19

0.75 0.430486 0.009965 1.036768 19.30651 2.87E-24

0.80 0.47293 0.014504 1.038847 23.58233 4.78E-28

0.85 0.500399 0.020081 1.040037 28.57797 8.63E-32

0.90 0.517477 0.029452 1.026954 37.13548 5.12E-37

0.95 0.534887 0.043081 1.015893 48.10711 2.84E-42

1.00 0.551493 0.107345 1.002358 27.31886 6.64E-31

b) Correlation Coefficient, Slope and t-Test in the linear regression between tY~ and tY

Correlation

Coefficient

Slope R2 t-test

(H0 : Slope=0)

t-Prob

Statistics -0.6008 -1.2629E-09 0.36 -5.1553 4.7404E-06
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Table 3.

Output of the regressions:  log Ch,t
g = αt

g + βt
g  log Yh,t + ε t

g .

Commodity
Group 1

g
tα̂ g

tβ̂ Std.Error

of g
tβ̂

t-value

Ho: 
g
tβ̂ = 0

R2 LM Test
For Omitted (Log Yt)2

t=200 -0.2498 0.8293 0.3847 19.064 [0.0000] ** 0.27 7.0917 [0.0079] **

t=250 -0.1628 0.8446 0.0250 33.721 [0.0000] ** 0.53 2.1374 [0.1441]

t=300 -0.5754 0.8978 0.0162 55.316 [0.0000] ** 0.75 2.2440 [0.1344]

t=350 -1.0496 0.9446 0.0141 66.731 [0.0000] ** 0.81 6.8328 [0.0091] **

t=400 -1.0251 0.9461 0.0143 66.359 [0.0000] ** 0.82 16.030 [0.0001] **

t=450 -1.0058 0.9474 0.0152 62.354 [0.0000] ** 0.80 8.4432 [0.0037] **

t=500 -0.9558 0.9475 0.0149 63.196 [0.0000] ** 0.81 3.3934 [0.0822] *

Commodity
Groups 2,…,5
(Aggregated)

g
tα̂ g

tβ̂ Std.Error

of g
tβ̂

t-value

Ho: 
g
tβ̂ = 0

R2 LM Test F(1,997)
for Omitted (Log Yt)2

t=200 -0.4585 1.0294 0.0096 107.66 [0.0000] ** 0.92 4.7358 [0.0298] *

t=250 -0.4774 1.0277 0.0052 198.02 [0.0000] ** 0.97 4.8723 [0.0402] *

t=300 -0.3919 1.0174 0.0033 308.54 [0.0000] ** 0.99 4.6806 [0.0307] *

t=350 -0.3400 1.0116 0.0028 356.32 [0.0000] ** 0.99 7.0823 [0.0079] **

t=400 -0.3414 1.0110 0.0027 367.72 [0.0000] ** 0.99 16.033 [0.0001] **

t=450 -0.3041 1.0081 0.0028 362.38 [0.0000] ** 0.99 17.215 [0.0000] **

t=500 -0.3411 1.0098 0.0027 367.92 [0.0000] ** 0.99 4.6001 [0.0318] *
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Table 4
Reset Test for Functional Form Specification in the extended regression

log Ch,t
g = αt

g + βt
g  log Yh,t + (log Yh,t) 2  +  εh, t

g

RESET Test      F(1, 996)

Time-Period Commodity Group 1 Commodity Groups
2,3,4 and 5 (Aggregated)

200 0.37068 [0.5428] 0.29995 [0.5840]

250 0.67287 [0.4122] 0.15043 [0.6982]

300 0.00980 [0.9211] 0.00083 [0.9769]

350    5.95680 [0.0148] * 2.31770 [0.1282]

400      8.50660 [0.0036] ** 2.67330 [0.1024]

450    4.76523 [0.0293] * 2.65432 [0.1035]

500 0.15582 [0.6931] 0.89528 [0.3443]

Table 5
χ2 and F tests for Income Dependent Heteroscedasticity

( Auxiliary Regression:   εh,tg = ω0 + ω1 log Yh,t + ω2 (log Yh,t)
2 + νh,tg )

Commodity Group 1
Commodity Groups

2,3,4 and 5 (Aggregated)Time

χ2 (2) Test F-Form F(2,995) χ2 (2) Test F-Form F(2,995)

200 1.4007 [0.4964] 0.6978 [0.4979] 17.030 [0.0002] **  8.6190 [0.0002] **

250 0.1052 [0.9488] 0.0523 [0.9423] 14.965 [0.0006] **  7.5582 [0.0006] **

300 4.0997 [0.1288] 2.0480 [0.1295] 7.826 [0.0199]* 3.901 [0.0202]*

350 3.3612 [0.1863] 1.6778 [0.1873] 5.9344 [0.0514] * 2.9700 [0.0518] *

400 5.9352 [0.0514]* 2.9704 [0.0517]* 5.2625 [0.0720] * 2.6319 [0.0724] *

450 1.4154 [0.4928] 0.7051 [0.4943] 1.7359 [0.4198]   0.8651 [0.4213]

500 8.4578 [0.0146]* 4.2437 [0.0146]* 14.468 [0.0007] **   7.3034 [0.0007] **
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Table 6
Stationarity vs. Stochastic Non-Stationarity of the series log Ct

g

Unit-root tests; Sample Period is from t=256 to t=491
Critical values: 5%=-3.43 1%=-4; Constant and Trend included

                t-adf           β        σ      lag   t-Test  t-Prob  F-Prob

LogC1          -1.7360       0.98067 0.0016726   5    1.5883  0.1136
LogC1          -1.6633       0.98143 0.0016781   4  -0.81041  0.4185  0.1136
LogC1          -1.7092       0.98096 0.0016769   3   -2.0746  0.0391  0.2058
LogC1          -1.8478       0.97932 0.0016888   2   0.44875  0.6540  0.0600
LogC1          -1.8269       0.97963 0.0016859   1   0.80525  0.4215  0.1065
LogC1          -1.7877       0.98011 0.0016846   0                    0.1416

LogC2          -1.7080       0.95354 0.0018160   5   -1.6429  0.1018
LogC2          -2.0915       0.94417 0.0018227   4    1.2688  0.2058  0.1018
LogC2          -1.8738       0.95092 0.0018251   3  -0.25230  0.8010  0.1176
LogC2          -1.9770       0.94951 0.0018214   2   0.00777  0.9938  0.2258
LogC2          -2.0336       0.94956 0.0018175   1  0.040983  0.9673  0.3591
LogC2          -2.0876       0.94980 0.0018136   0                    0.4969

LogC3          -3.2396       0.89898 0.0017289   5  -0.37166  0.7105
LogC3          -3.3830       0.89672 0.0017257   4  -0.67679  0.4992  0.7105
LogC3          -3.6111*      0.89237 0.0017236   3   0.95407  0.3410  0.7432
LogC3          -3.4898*      0.89826 0.0017233   2   0.83900  0.4023  0.6828
LogC3          -3.3932       0.90306 0.0017222   1  -0.54188  0.5884  0.6995
LogC3          -3.5922*      0.89981 0.0017196   0                    0.7776

LogC4         -0.74438       0.98897 0.0016310   5  -0.00089  0.9993
LogC4         -0.75344       0.98897 0.0016275   4  -0.80004  0.4245  0.9993
LogC4         -0.87384       0.98734 0.0016262   3  -0.23810  0.8120  0.7275
LogC4         -0.91981       0.98684 0.0016229   2  -0.48071  0.6312  0.8746
LogC4         -0.99945       0.98587 0.0016202   1  -0.77989  0.4362  0.9210
LogC4          -1.1176       0.98436 0.0016188   0                    0.9099

LogC5          -1.3024       0.98215 0.0013638   5    1.6495  0.1004
LogC5          -1.1024       0.98495 0.0013689   4   0.55503  0.5794  0.1004
LogC5          -1.0486       0.98579 0.0013669   3  -0.24757  0.8047  0.2219
LogC5          -1.0895       0.98538 0.0013641   2   0.68036  0.4970  0.3796
LogC5          -1.0138       0.98652 0.0013625   1   -1.2706  0.2051  0.4712
LogC5          -1.1708       0.98452 0.0013643   0                    0.3987
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Table 7
Estimation Results and Diagnostic Tests on the VAR model relating changes in log of nominal

consumption for each commodity group to changes in log of real income and price indices

(tail probabilities in square brackets).

(i) Estimated Coefficients (Standard Errors in round brackets)
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(ii) Diagnostic Tests

Fitting Statistics:

σ = 0.00150022 RSS =    0.0005311548359 loglik =  6304.6863

Log|Ω| = -52.1048 |Ω| =    2.35046e-023 T = 242
Log|Y'Y/T| = -43.7033 R2(LR) =  0.999775 R2 (LM) = 0.281764

F-test on all regressors except unrestricted:  F(24,814) = 343.08 [0.0000] **
F-tests on retained regressors, F(4, 233):

      ∆LogM     227441  [0.0000] **        ∆P1     1247.97 [0.0000] **
        ∆P2     1287.66 [0.0000] **        ∆P3     1784.30 [0.0000] **

     ∆P4     2211.54 [0.0000] **        ∆P5     2458.94 [0.0000] **

Diagnostic Tests

Equations Portmanteau
(12 Lags)

AR 1-2
F( 2,234)

Normality
Chi2 (2)

ARCH 1
F(1,234)

Xi
2

F(12,223)
Xi * Xj

F(27,208)

∆logCt
1 17.471 0.7094

[0.4930]
1.6181

[0.4453]
0.6469

[0.4221]
0.8829

[0.5651]
0.8454

[0.6885]

∆logCt
2 13.713 0.5546

[0.5751]
0.0492

[0.9757]
0.5065

[0.4774]
0.8078

[0.6423]
0.7346

[0.8281]

∆logCt
3 4.3074 0.1188

[0.8880]
1.2494

[0.5354]
0.9476

[0.3313]
1.1682

[0.3073]
0.7950

[0.7559]

∆logCt
4 9.3214 0.2119

[0.8092]
2.8726

[0.2378]
0.6739

[0.4125]
1.0201

[0.4312]
1.1956

[0.2407]

VAR 174.63 1.0124
[0.4495]

4.1483
[0.8435]

- 0.9667
[0.5846]

0.97063
[0.9274]
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Table 8
Stationarity vs. Stochastic Non-Stationarity of the series Wt

g

Unit-root tests; Sample Period is from t=253 to t=491
Critical values: 5%=-2.874 1%=-3.459; Constant included

                 t-adf          β             σ     lag  t-Test   t-prob  F-prob

W1             0.50766        1.0015 0.00026168   2   0.55747  0.5777
W1             0.55740        1.0016 0.00026129   1   0.75130  0.4532  0.5777
W1             0.61719        1.0018 0.00026105   0                    0.6466

W2            -0.26652       0.99730 0.00030707   2  -0.89313  0.3727
W2            -0.37172       0.99627 0.00030694   1   0.13438  0.8932  0.3727
W2            -0.35780       0.99644 0.00030630   0                    0.6655

W3             -1.1284       0.99020 0.00032129   2  -0.35660  0.7217
W3             -1.1461       0.99008 0.00032070   1  -0.59432  0.5529  0.7217
W3             -1.1795       0.98982 0.00032026   0                    0.7872

W4             -1.4144       0.98690 0.00028880   2  -0.19794  0.8433
W4             -1.4288       0.98681 0.00028821   1  -0.73246  0.4646  0.8433
W4             -1.4680       0.98648 0.00028793   0                    0.7510

W5            -0.29730       0.99899 0.00034315   2    1.4889  0.1379
W5            -0.25012       0.99915 0.00034404   1   -2.2129  0.0279  0.1379
W5            -0.32907       0.99887 0.00034685   0                    0.0297

Unit-root tests; Sample Period is from t=253 to t=491
Critical values: 5%=-3.43 1%=-4; Constant and Trend included

                 t-adf          β             σ     lag  t-Test   t-prob  F-prob

W1             -1.9450       0.97632 0.00025973   2   0.67013  0.5034
W1             -1.9051       0.97689 0.00025943   1   0.86694  0.3869  0.5034
W1             -1.8501       0.97762 0.00025929   0                    0.5500

W2             -2.1372       0.95243 0.00030443   2  -0.55185  0.5816
W2             -2.2821       0.95016 0.00030398   1   0.47871  0.6326  0.5816
W2             -2.2355       0.95214 0.00030348   0                    0.7663

W3             -3.7804*      0.87969 0.00031341   2   0.44783  0.6547
W3             -3.7832*      0.88291 0.00031287   1   0.22129  0.8251  0.6547
W3             -3.8438*      0.88449 0.00031224   0                    0.8828

W4            -0.27694       0.99675 0.00028826   2  -0.45330  0.6507
W4            -0.35175       0.99593 0.00028778   1  -0.94940  0.3434  0.6507
W4            -0.49300       0.99436 0.00028772   0                    0.5766

W5             -1.6823       0.97660 0.00034188   2    1.6218  0.1062
W5             -1.5450       0.97852 0.00034306   1   -2.0700  0.0395  0.1062
W5             -1.7433       0.97571 0.00034544   0                    0.0326
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Table 9
Estimation Results for Budget Shares of Group 1 and 5

Modelling ∆∆∆∆W1 by OLS.  The present sample is:  250 to 491

Variable     Coefficient    Std.Error  t-value  t-prob  PartR^2
Constant        0.014399     0.017400    0.828  0.4091  0.0041
DW1_1           0.067477     0.080796    0.835  0.4048  0.0042
DW1_2           0.072266     0.078136    0.925  0.3564  0.0052
DW1_3           -0.13778     0.079565   -1.732  0.0852  0.0178
DW1_4           -0.12425     0.078185   -1.589  0.1139  0.0151
DW1_5          0.0081782     0.079610    0.103  0.9183  0.0001
DW1_6           0.041917     0.081683    0.513  0.6085  0.0016
DW1_7          -0.093529     0.079630   -1.175  0.2419  0.0083
DW1_8           -0.11975     0.077689   -1.541  0.1251  0.0142
DW1_9            0.11576     0.076248    1.518  0.1309  0.0138
DW1_10         -0.037119     0.077013   -0.482  0.6305  0.0014

DLogY         -0.0079119     0.034163   -0.232  0.8171  0.0003
DLogY_1        0.0055317     0.034025    0.163  0.8711  0.0002
DLogY_2         0.020731     0.033492    0.619  0.5368  0.0023
DLogY_3        -0.018563     0.034391   -0.540  0.5901  0.0018
DLogY_4         0.045341     0.034535    1.313  0.1910  0.0103
DLogY_5         0.077241     0.034523    2.237  0.0266  0.0294
DLogY_6         0.039277     0.035487    1.107  0.2700  0.0074
DLogY_7        -0.051060     0.034684   -1.472  0.1429  0.0130
DLogY_8       -0.0069982     0.035748   -0.196  0.8450  0.0002
DLogY_9         0.074726     0.034452    2.169  0.0315  0.0277
DLogY_10        0.057994     0.034924    1.661  0.0987  0.0164

P1            -0.0040681    0.0022155   -1.836  0.0681  0.0200
P1_1          -0.0014405    0.0022903   -0.629  0.5303  0.0024
P1_2          -0.0049606    0.0023072   -2.150  0.0330  0.0273
P1_3           0.0038150    0.0023237    1.642  0.1025  0.0161
P1_4          -0.0037049    0.0023212   -1.596  0.1124  0.0152
P1_5           0.0012277    0.0023123    0.531  0.5962  0.0017
P1_6         -0.00018341    0.0023001   -0.080  0.9365  0.0000
P1_7          -0.0029585    0.0023352   -1.267  0.2070  0.0096
P1_8          -0.0027406    0.0024003   -1.142  0.2552  0.0078
P1_9           0.0018748    0.0023725    0.790  0.4305  0.0038
P1_10        -0.00032785    0.0023565   -0.139  0.8895  0.0001

P2            0.00085988    0.0022112    0.389  0.6979  0.0009
P2_1           0.0026362    0.0021606    1.220  0.2242  0.0089
P2_2           0.0028655    0.0022212    1.290  0.1988  0.0100
P2_3        -3.1874e-005    0.0022014   -0.014  0.9885  0.0000
P2_4          -0.0019596    0.0022060   -0.888  0.3757  0.0048
P2_5           0.0030341    0.0022523    1.347  0.1798  0.0109
P2_6           0.0025096    0.0022884    1.097  0.2744  0.0072
P2_7         -0.00037745    0.0022475   -0.168  0.8668  0.0002
P2_8          -0.0041533    0.0022574   -1.840  0.0676  0.0201
P2_9           0.0031807    0.0022966    1.385  0.1679  0.0115
P2_10        -0.00064465    0.0022645   -0.285  0.7762  0.0005

P3           -0.00075375    0.0021648   -0.348  0.7281  0.0007
P3_1          -0.0012626    0.0020942   -0.603  0.5474  0.0022
P3_2           0.0031266    0.0021020    1.487  0.1388  0.0132
P3_3           0.0034611    0.0021262    1.628  0.1055  0.0158
P3_4          0.00095185    0.0021348    0.446  0.6563  0.0012
P3_5          -0.0010036    0.0020987   -0.478  0.6331  0.0014
P3_6          -0.0017712    0.0020423   -0.867  0.3871  0.0045
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P3_7         -0.00038312    0.0020183   -0.190  0.8497  0.0002
P3_8           0.0025405    0.0020090    1.265  0.2078  0.0096
P3_9          -0.0013308    0.0019754   -0.674  0.5015  0.0027
P3_10          0.0018484    0.0020330    0.909  0.3646  0.0050

P4            -0.0032225    0.0019425   -1.659  0.0990  0.0164
P4_1          -0.0011197    0.0019668   -0.569  0.5699  0.0020
P4_2         -0.00061173    0.0019426   -0.315  0.7532  0.0006
P4_3          -0.0026184    0.0019550   -1.339  0.1823  0.0108
P4_4           0.0019880    0.0019309    1.030  0.3047  0.0064
P4_5          0.00047779    0.0018993    0.252  0.8017  0.0004
P4_6          -0.0029956    0.0019146   -1.565  0.1196  0.0146
P4_7          -0.0054100    0.0019310   -2.802  0.0057  0.0454
P4_8          -0.0020209    0.0019950   -1.013  0.3126  0.0062
P4_9           0.0020014    0.0019600    1.021  0.3087  0.0063
P4_10         -0.0015133    0.0019722   -0.767  0.4440  0.0036

P5             0.0040710    0.0024694    1.649  0.1011  0.0162
P5_1          0.00015334    0.0025030    0.061  0.9512  0.0000
P5_2          -0.0025588    0.0024199   -1.057  0.2919  0.0067
P5_3          0.00064062    0.0023429    0.273  0.7849  0.0005
P5_4        -7.1316e-005    0.0023095   -0.031  0.9754  0.0000
P5_5          -0.0026849    0.0023655   -1.135  0.2580  0.0077
P5_6           0.0010634    0.0022633    0.470  0.6391  0.0013
P5_7          0.00091247    0.0022652    0.403  0.6876  0.0010
P5_8         -0.00093153    0.0022951   -0.406  0.6854  0.0010
P5_9          -0.0060717    0.0023336   -2.602  0.0101  0.0394
P5_10        -0.00094319    0.0024006   -0.393  0.6949  0.0009

R2 = 0.374521  F(76,165) = 1.3 [0.0839]  σ = 0.000248291  DW = 1.98
RSS = 1.017200123e-005 for 77 variables and 242 observations

AR 1- 2 F( 2,163) =      1.1594  [0.3162]
ARCH 1  F( 1,163) =      0.32107 [0.5717]
Normality Chi2(2)=       3.053   [0.2173]
Xi

2     F(152, 12) =      0.13954 [1.0000]
RESET   F( 1,164) =      1.0579  [0.3052]

Solved Static Long Run equation (Std. Err. in parentheses)
         ∆W1 =  +0.01193              -0.1958 ∆LogY       -0.01116 P1
                (0.01485)            (0.09559)           (0.006759)

                +0.006562 P2         +0.004494 P3          -0.01247 P4

    (0.005806)           (0.005267)           (0.006793)
                 -0.00532 P5

                (0.007467)

WALD test on the joint significance of the regressors in the static long-run
equation:

Chi2(6) = 12.14 [0.0589]*
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Modelling ∆∆∆∆W5 by OLS;  The present sample is:  250 to 491

Variable     Coefficient    Std.Error  t-value  t-prob  PartR^2
DW5_1          -0.082185     0.077074   -1.066  0.2878  0.0068
DW5_2           0.071646     0.076488    0.937  0.3503  0.0053
DW5_3         -0.0096307     0.077876   -0.124  0.9017  0.0001
DW5_4           0.055801     0.077361    0.721  0.4717  0.0031
DW5_5           0.033120     0.078369    0.423  0.6731  0.0011
DW5_6          -0.051880     0.076937   -0.674  0.5011  0.0027
DW5_7          -0.035467     0.076054   -0.466  0.6416  0.0013
DW5_8         0.00098872     0.076691    0.013  0.9897  0.0000
DW5_9           -0.12282     0.075094   -1.636  0.1038  0.0159
DW5_10          0.022530     0.075979    0.297  0.7672  0.0005

DLogY           0.012063     0.047117    0.256  0.7983  0.0004
DLogY_1         0.030212     0.046187    0.654  0.5139  0.0026
DLogY_2        -0.043489     0.046183   -0.942  0.3477  0.0053
DLogY_3        -0.036847     0.047890   -0.769  0.4427  0.0036
DLogY_4         0.029431     0.047730    0.617  0.5383  0.0023
DLogY_5         0.079272     0.048522    1.634  0.1042  0.0158
DLogY_6        -0.036480     0.048421   -0.753  0.4523  0.0034
DLogY_7         0.050134     0.047122    1.064  0.2889  0.0068
DLogY_8        -0.024313     0.047179   -0.515  0.6070  0.0016
DLogY_9         0.010077     0.046147    0.218  0.8274  0.0003
DLogY_10       -0.041547     0.046244   -0.898  0.3703  0.0048

P1            -0.0027548    0.0029610   -0.930  0.3535  0.0052
P1_1           0.0026985    0.0029956    0.901  0.3690  0.0049
P1_2           0.0036776    0.0030099    1.222  0.2235  0.0089
P1_3           0.0013651    0.0030325    0.450  0.6532  0.0012
P1_4           0.0011860    0.0030519    0.389  0.6981  0.0009
P1_5          -0.0055964    0.0030561   -1.831  0.0689  0.0198
P1_6           0.0025663    0.0030818    0.833  0.4062  0.0042
P1_7          0.00062041    0.0030890    0.201  0.8411  0.0002
P1_8           0.0017759    0.0031212    0.569  0.5701  0.0019
P1_9         -0.00069218    0.0031232   -0.222  0.8249  0.0003
P1_10         0.00086999    0.0030791    0.283  0.7779  0.0005

P2            -0.0032273    0.0030453   -1.060  0.2908  0.0067
P2_1          -0.0023747    0.0029514   -0.805  0.4222  0.0039
P2_2           0.0010171    0.0029625    0.343  0.7318  0.0007
P2_3          -0.0036754    0.0029815   -1.233  0.2194  0.0091
P2_4           0.0021103    0.0030270    0.697  0.4867  0.0029
P2_5          -0.0048765    0.0031438   -1.551  0.1228  0.0143
P2_6         1.3506e-005    0.0032066    0.004  0.9966  0.0000
P2_7          -0.0033518    0.0031482   -1.065  0.2886  0.0068
P2_8          -0.0040231    0.0031632   -1.272  0.2052  0.0097
P2_9          0.00076303    0.0031769    0.240  0.8105  0.0003
P2_10         -0.0020661    0.0030912   -0.668  0.5048  0.0027

P3             0.0015409    0.0029322    0.525  0.5999  0.0017
P3_1           0.0028598    0.0027970    1.022  0.3081  0.0063
P3_2           0.0029338    0.0027934    1.050  0.2951  0.0066
P3_3           0.0018003    0.0028435    0.633  0.5275  0.0024
P3_4          -0.0041426    0.0028621   -1.447  0.1497  0.0125
P3_5         -0.00081055    0.0028010   -0.289  0.7726  0.0005
P3_6          -0.0031370    0.0027469   -1.142  0.2551  0.0078
P3_7          -0.0016872    0.0028079   -0.601  0.5487  0.0022
P3_8          -0.0026356    0.0027974   -0.942  0.3475  0.0053
P3_9           0.0059293    0.0027877    2.127  0.0349  0.0265
P3_10         -0.0030227    0.0028883   -1.047  0.2968  0.0066
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P4           -0.00096590    0.0025289   -0.382  0.7030  0.0009
P4_1           0.0020119    0.0025429    0.791  0.4300  0.0038
P4_2           0.0061854    0.0025650    2.411  0.0170  0.0338
P4_3           0.0027090    0.0026503    1.022  0.3082  0.0063
P4_4          -0.0015558    0.0026208   -0.594  0.5536  0.0021
P4_5           0.0023941    0.0026267    0.911  0.3634  0.0050
P4_6           0.0010877    0.0026446    0.411  0.6814  0.0010
P4_7          0.00078059    0.0026301    0.297  0.7670  0.0005
P4_8           0.0020296    0.0026642    0.762  0.4473  0.0035
P4_9          -0.0030548    0.0026582   -1.149  0.2521  0.0079
P4_10          0.0030617    0.0026875    1.139  0.2563  0.0078

P5             0.0012626    0.0033587    0.376  0.7075  0.0009
P5_1          -0.0030755    0.0033403   -0.921  0.3585  0.0051
P5_2           0.0032968    0.0032282    1.021  0.3086  0.0062
P5_3         -0.00097235    0.0031370   -0.310  0.7570  0.0006
P5_4           0.0029049    0.0030984    0.938  0.3498  0.0053
P5_5          -0.0044821    0.0031865   -1.407  0.1614  0.0118
P5_6           0.0011213    0.0031122    0.360  0.7191  0.0008
P5_7          0.00068764    0.0030605    0.225  0.8225  0.0003
P5_8          -0.0017455    0.0030233   -0.577  0.5645  0.0020
P5_9          0.00081573    0.0030821    0.265  0.7916  0.0004
P5_10        -0.00097498    0.0031339   -0.311  0.7561  0.0006

R2 = 0.346397  σ = 0.000343694
DW = 1.99RSS = 1.960882911e-005 for 76 variables and 242 observations
AR 1- 2 F( 2,164) =      0.077785  [0.9252]
ARCH 1  F( 1,164) =      1.4758    [0.2262]
Normality Chi2(2)  =     0.9086    [0.6349]
Xi

2    F(152, 13)  =      0.085042 [1.0000]
RESET   F( 1,165) =      0.23458  [0.6288]

Solved Static Long Run equation (Std. Err. in parentheses)

         ∆W5 =  +0.02551 ∆LogY      +0.005113 P1          -0.01761 P2
                (0.1359)            (0.008066)            (0.007964)
                -0.0003325 P3          +0.01313 P4         -0.001039 P5

     (0.007537)           (0.008583)            (0.0095)

WALD test on the joint significance of the regressors in the static long-run
equation:

Chi2(6) = 20.006 [0.0028] **
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Appendix 2

In order to try to assess the shape of cross-section Engel curve specification, we have firstly

performed a descriptive analysis of the Working-Leser model:

wi
g  = αg + βt

g log mi 
g

where wi
g is the budget share of agent i in commodity group g and mi is total real income

(expenditure) of agent i. As to aggregation in commodity groups, we considered two different

setups, namely (i) goods are aggregated into the original 5 groups, g=1,… ,5; and (ii) goods are

aggregated into 2 groups, i.e. g={B,L}, where B=(1∪2) stands for ‘basics’ and L=(3∪4∪5) stands

for ‘luxury’. For every commodity group, and for different points in time, we carried out cross-plots

of wi
g vs. (log mi

g) and we performed both parametric (OLS) and non-parametric (Kernel)

regressions.

As a general pattern (see Fig. 1), one is likely to find a low correlation between budget shares
and log of income. Despite that, irrespective of the aggregation setup, budget shares and log of
individual incomes seem to be correlated with the expected signs (cf. panels (a) and (b) with (c) and
(d)). Moreover, quite in line with the results of Banks et al. (1997), non-linearities appear
throughout, suggesting the need for higher order terms of log mi

g in cross-section Engel curves.
We then estimated by standard OLS in both aggregation setups the alternative specifications:

M1: wi
g  = αg + β1t

g log mi 
g + β1t

g (log mi 
g)2 + εi

g 
M2: wi

g  = αg + βt
g log mi 

g + εi
g

Estimation results for a paradigmatic case are reported in Table 2 below. Although the R2s for

all the cross-section regressions are very low, both food-like and non-food-like expenditure shares

display non-linearities in the log of income. Tests for Autoregressive Conditional (ARCH) and

Income Dependent Heteroscedasticity (F-Test, not reported) failed to find any evidence for

heteroscedastic residuals. Nevertheless, functional form mispecification arise in all estimated log-

linear models: both the equivalent Reset F-test and LM tests –  performed to assess whether the

variable [log mh,t]2 has been omitted – strongly reject the null hypothesis. However, once the square

of the log of income is introduced in the regression, no mispecifications are reported, even though

the R2s still remain very low. Finally, further nonlinear terms appear to be not significant in

explaining budget shares.

The foregoing results –  quite in tune with those obtained for empirical data by Banks et al. (1997) –
suggest, first, that non-linear terms (especially the square of the log of income) do indeed matter in
Engel curve specifications, and, secondly, that the Gorman’s Rank 3 assumption should be satisfied
by our computer-simulated data. This conjecture is indeed supported by jointly testing a demand
system for 4 out of the 5 commodity groups (avoiding singularity of the dependent variables matrix)
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and employing χ2 statistics to test non-linear restrictions implied by the determinants of the matrices
of estimated parameters (not shown).

Figure 1
Linear Regression (Thin Lines) and Non Parametric - Kernel Estimates of Engel Curves
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Figure 1(b)

Cross-Plots of  Log (Cg)  vs. Log (Y) at time t=500.
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Figure 2
Evolution over Time of Income Elasticity and Intercepts for Commodity Group 1
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Figure 3
Budget Shares Time Series
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Figure 4

Plots of the Normalized Lag Weights (lags t+1, t+2, … on the x-axis) for the regression:
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