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Abstract

Building on some general properties of the empirical patterns of technological dif-
fusion and innovation, the paper presents a simple model in which self-sustaining
growth endogenously emerges as the result of imperfect coordination among stylized,
boundedly-rational, heterogeneous, firms which locally interact in an open-ended tech-
nological space and are able to modify the set of their ‘nearest neighbors’. We allow
the system to be characterized by: (i) endless opportunities of introducing either
‘incremental’ or ‘radical’ innovations; (ii) path-dependency in learning achievements;
(iii) dynamic increasing returns grounded upon collectively shared ‘knowledge bases’.
By means of extensive Montecarlo studies, we identify necessary conditions for pat-
terns of persistently fluctuating exponential growth to be generated in the economy.
We also investigate causal relationships between system/behavioral parameters tun-
ing the sources of growth and : (a) the overall performance of the economy; (b) the
emergence of the exploration-exploitation trade-off; (c) the ability of the system to self-
organize and generate GNP time-series of exponential growth with small growth-rates
long-run volatility and statistical properties similar to those exhibited by empirical
observed time-series. Finally, the effects of behavioral heterogeneity on aggregate out-
comes are analyzed and a simple example is presented in which collective economic
growth finds its necessary condition in the presence of a share of ‘irrational’ individuals
in the population.
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1 Introduction

In the past few years, the attention of the economic discipline has been brought
back to a deeper analysis of the determinants of self-sustained processes of
economic growth fueled by technological advances.

On the one hand, both ‘Endogenous Growth’ and ‘Evolutionary’ models have
been trying to develop formal theories in order to explain how per-capita incomes
grow (also) as the outcome of positive feed-backs in knowledge accumulation!.
On the other hand, a rapidly expanding, empirically-grounded, literature on the
economics of technological change has been exploring the drivers of innovation
and diffusion - as well as the mechanism through which they occur and their
effects - at the levels of firms, sectors and whole Countries?.

Notwithstanding all that, many scholars have recently spelled out a negative
assessment on the extent to which ‘neoclassical’ and ‘endogenous’ growth theo-
ries have been able to match ‘old’ and ‘new’ growth ‘stylized facts™. Relatedly,
a large body of literature has argued that there still remains an enormous gap
between what we historically know about technical change (and its economic
exploitation) and the ways we represent them in growth models*. According to
this view, formal modelers should attempt to take into account some of the fol-
lowing general properties of the empirical patterns of innovation and diffusion,
which seem to be indeed neglected by a good deal of contemporary literature.

First, both ‘classic’ and ‘new’ aggregate growth models tend to overlook (and
in most cases ignore) the systematic heterogeneity in microeconomic technolog-
ical competencies recently brought into greater prominence by the empirical
literature. As a consequence, any ‘representative agent’ reduction employed in
these formalizations might turn out to be highly misleading whenever the aggre-
gate dynamics depends not only on the average characteristics of any population
but also on the microeconomic distributions themselves and on the details of
the interaction mechanisms among economic micro entities®.

Second, there appear to be a striking conflict between the incredibly sophis-
ticated forward-looking rationality one typically imputes to agents in aggregate
formal stories and the messy experimentation which empirical students of in-
novation and business history usually find - full of stubborn mistakes, ‘animal
spirits’ and unexpected discoveries’.

Third, partly as a consequence, it seems quite hard to interpret macro-
dynamics as equilibrium paths isomorphic to some underlying ‘representative’
behavioral pattern”.

! Concerning the former, see Romer (1986, 1990), Grossman and Helpman (1991b). On
evolutionary models of growth cf. Nelson and Winter (1982), Silverberg and Verspagen (1995b)
and the references therein.

2See, among others, Freeman (1982, 1994), Rosenberg (1982, 1994), David (1975), Dosi
(1988), Nelson (1995), Lundvall (1993), Granstrand (1994), Stoneman (1995), and fair parts
of Dosi et al. (1988) and Foray and Freeman (1992).

3Cf. Durlauf and Quah (1998), Klenow and Rodriguez-Clare (1997) and McGrattan and
Schmitz (1998).

1See Nelson (1998). Cf. Dosi et al. (1994), for an outline of some historical ’stylized facts’
which the theory should ideally account for.

50n this and related points, cf. Kirman (1989, 1992) and Allen (1988).

6For example, on entry dynamics of new firms cf. the evidence discussed in Dosi and
Lovallo (1997).

See Silverberg and Verspagen (1995b).



Finally, economic change appears to be driven at least as much by time-
consuming diffusion as from innovation®.

As a result, self-sustained patterns of economic growth should be interpreted
as the emergent property of a complex, evolving system composed of many het-
erogeneous simple entities locally interacting in a high-dimensional, and possibly
open-ended, technological space’. Following this intuition, the paper presents
a computer-simulated model of endogenous growth that builds on the forego-
ing five properties, together with other ‘stylized facts’ stemming from empirical
analyses of technological change often disregarded in formal aggregate endeav-
ors. The rest of the article is organized as follows.

In Section 2, we shall outline in more detail the building blocks and theoret-
ical conjectures supporting the model described in Section 3. Next, in Sections
4 and 5, we will present an extensive analysis of the simulation results. Section
6 discusses some econometric properties of the simulated time-series, while, in
Section 7, a few extensions of the basic model are introduced. Finally, Section
8 draws some conclusions and flags research developments ahead.

2 Decentralized Knowledge Accumulation, In-
teractions and Collective Outcomes

To begin with, let us try to briefly portray some of the key qualitative properties
of the process of technological change, as they are singled out by the relevant
empirically-grounded literature.

Technological advances, to a significant extent, are generated, endogenously,
through resource-expensive search undertaken by a multiplicity of profit- moti-
vated agents. Search itself is generally uncertain and innovative entrepreneurs
(or, for that matter, incumbent firms undertaking innovative activities) are
driven by the beliefs that “there might be something profitable out there”,
but are generally unable to form probability distributions on the outcomes of
their search efforts.

Innovations are not entirely appropriable: knowledge progressively diffuses
to other agents who might well catch-up by investing in imitation - most likely,
with a lag proportional to some measure of the distance between the knowledge
which they master and the competencies they want to acquire.

Knowledge accumulation generally entails dynamic increasing returns both
at the levels of individual agents (typically, business firms) and collection of
them (i.e. industries), grounded upon collectively shared ‘learning paradigms’.
However, radically new technologies involve, to different degrees, ruptures and
‘mismatching’, so that only part of the old knowledge might be useful to the

exploitation of future technologies!?.

8 This point has indeed been emphasized within otherwise rather orthodox models by Jo-
vanovic and Rob (1989), Jovanovic (1995), and, of course, is near the concerns of evolutionary
modelers (c¢f. Nelson and Winter (1982), Silverberg et al. (1988), Metcalfe (1988, 1996)).

9Cf. Lane (1993a,b), Krugman (1996), Leijonhufvud (1996) and the articles in Arthur et
al. (1997).

00n these points, see in particular Rosenberg (1982) and Freeman (1982) regarding tech-
nologies uncertainty; cf. Freeman (1982), Levin et al. (1987), Nelson and Winter (1982), and
the remarks in Dosi (1997) and Nelson (1997), on appropriability; see Arrow (1962), David
(1975, 1988), Romer (1990), Atkinson and Stiglitz (1969), Nelson and Winter (1982), Dosi
(1988) and Malerba and Orsenigo (1993) on different - theoretical and empirical - appreciation



Technological search, as well as information diffusion and knowledge accumu-
lation, can be then fruitfully depicted as an interaction process taking place in
some (high-dimensional) technological space!!. Direct interactions among busi-
ness firms might indeed arise in the economy at many levels. First, entrepreneurs
may spread, either intentionally or not, some of the knowledge they master in
their ‘technological neighborhoods’, possibly leading to localized benefits origi-
nated by increasing returns to scale and positive network externalities. Second,
business firms - as they gradually explore in the vicinity of the existing practices
- might be directly affected in their search by other firms currently employing
‘similar’ technologies. In either situation, because of the highly path-dependent
nature of exploitation and innovation activities, interaction structures will dis-
play strong non-stationarities'?, since the set of units (firms and technologies)
directly affecting imitative and innovative behaviors of every other business firm
in the economy are likely to keep changing at each point in time.

Beside all that, the model presented in Section 3 explicitly takes on board
four out of the five ‘facts’ that Paul Romer (1994) identifies as underlying ‘New
Growth Theories’, namely: (i) multiplicity of agents; (ii) non-rivalry in the use of
knowledge; (iii) ‘replicability’ of physical production activities; (iv) endogeneity
of discovery efforts. The fifth one - i.e. the rents associated with successful dis-
coveries - is implicitly there but plays no role. On purpose, the expectations on
these rents have been partly de-linked from their actual average values (which is
implied by the abandonment of any rational technological expectation hypoth-
esis). Hence, while acknowledging that agents search for innovations because
they can sometimes earn a rent on them, no monotonic relation between the
‘true’ expected value of those rents and the propensity to innovate is assumed.
As a first approximation, the focus will be on the study of the ways patterns of
knowledge accumulation, together with institutionally nested ‘animal spirits’,
affect growth - with rent-related incentives just as permissive conditions, above
a minimum threshold!3.

While sharing some overlapping with ‘New Growth’ models - knowledge dif-
fusion in presence of dynamic increasing returns are identified as the primary
sources of growth - the model departs from them in a few important respects.
First, knowledge is neither treated as entirely appropriable or a pure externality.
Rather, its benefits partly accrue to those who embody it and partly leak out
as a sort of spill-over. Second, dynamic increasing returns are, at least to some
extent, technology specific. Third, diffusion of information takes time rather
then being instantaneous. Finally, the radical uncertainty intrinsic in the inno-
vation process involves the possibility that agents make systematic mistakes in
innovative search and adoption.

Moreover, well in the spirit of an evolutionary perspective, the model as-

of dynamic increasing returns; cf. Nelson and Winter (1977), Dosi (1982) and Freeman and
Perez (1988) on somewhat complementary notions of 'technological paradigms’ and relatively
ordered ’trajectories’ in learning patterns.

1 More on technological search as a local interaction process in a technological space is in
Chiaromonte and Dosi (1993).

12Cf. Kirman (1997, 1998) for a discussion on ’evolving networks’. See also Fagiolo (1998).

131n fact, this is quite in tune with the empirical evidence. While it is obviously true
that with zero appropriability of innovation no private actor has any incentive to undertake
expensive search (e.g. for a long time agricultural research on new varieties of seeds, etc.), on
the other side, to our knowledge, there is no convincing evidence, either cross-country or over
time, that innovative efforts respond smoothly to the fine tuning of appropriability conditions.



sumes: (i) heterogeneity among agents in their technological and behavioral
features, e.g. their problem-solving knowledge and their propensity to search
and to quickly imitate!*; (ii) diversity in the knowledge-bases upon which agents
are able to draw; (iii) path-dependency in learning achievements; (iv) bounded
rationality in both decisions to allocate resources to search and choices on the
directions of search efforts!?; (v) ‘open-ended’ dynamics in the technology space
(so that learning opportunities are notionally unlimited, but what each agent
can achieve at any one time is constrained by what one has learned in the past).
However, unlike full-fledged evolutionary formalizations, one does not explicitly
account for any selection dynamics through which individual agents (in primis,
firms) grow, shrink or die according to their revealed technological and market
success'9. Hence, the following could be regarded as a reduced form of an evo-
lutionary growth model, focusing upon the collective outcomes of decentralized
patterns of knowledge accumulation, while suppressing - like most traditional
growth formalizations - any explicit competitive interaction.

On the grounds of these basic building blocks, the following issues are ad-
dressed.

First, we will attempt to identify some broad circumstances under which the
economy is able to solve the trade-off between ‘exploitation’ of known technolo-
gies and ‘exploration’ of potentially superior ones and generate self-sustaining
growth!”. Notice that, as the model does not rest on any a priori commitment
to individual rationality and collective equilibria, this question involves an issue
which could be called of Schumpeterian coordination, namely: Can ‘boundedly
rational’, heterogeneous agents - locally interacting in some complex technolog-
ical space - imperfectly coordinate their efforts of search for novel opportunities
and of exploitation of what they already know, such as to yield relatively ordered
patterns of self-sustained aggregate growth ?

Second, extensive experiments of comparative dynamics will be performed
so as to map different conditions of generation and diffusion of knowledge into
the resulting growth patterns. For example, what happens to the mean (and
higher moments) of the distribution of average growth rates across indepen-
dent sample paths as technological parameters change ? What if one gradually
tunes the parameters governing the magnitude of innovative opportunities, the
degree of locality in the imitation/diffusion process and/or the amount of path-

MParts of the overwhelming evidence on this point are surveyed in Nelson (1981), Freeman
(1982), Dosi (1988).

15Hence, unlike stochastic New Growth models of ’creative destruction’ - such as Cheng
and Dinopoulos (1991) and Aghion and Howitt (1992) - or 'hybrids’ between “old’ and 'new’
ones - as Jovanovic and Rob (1990) and Jones and Newman (1994) - the analysis is not
confined to those rather special cases whereby decentralized agents on average ’get it right’...

On this point, the empirical evidence indeed matches quite solid theoretical reasons on
the impossibility of forming unbiased expectations on future technological advances. After
all, innovation is about solving problems that one has been unable to solve so far. But if
one could know, even in probability, how to solve them, that would mean that the solution
algorithm has already been found. The issue bears on problem-solving complexity and, more
generally, on the predictability of discovery. More on this is in Dosi and Egidi (1991) and Dosi
et al. (1996), within a vast literature.

16See Silverberg and Verspagen (1995a, 1995¢), Dosi and Nelson (1994). Cf. Section 7.2,
however, for an example of how one could indirectly address selection issues in the model.

17For a thorough discussion on the exploitation-exploration trade-off arising in adaptive
systems see March (1991), Schumpeter (1934), Holland (1975), Allen and McGlade (1986)
and Kuran (1988). See also Levinthal and March (1981) and Levitt and March (1988) on the
trade-off between the refinement of an existing technology and invention of a new one.



dependence in learning achievements ? Are there any monotone relationships
between the size (respectively, the growth rate) of the population and the levels
(respectively, the growth rate) of the output ?

Third, we shall investigate whether processes of innovation, imitation and
diffusion with the above characteristics are capable of generating GNP time-
series displaying statistical properties similar to the empirically observed ones.
For instance, can one robustly associate different regimes of opportunities, path-
dependency and information diffusion to significantly different output growth
autocorrelation structures or to some measure of the persistence of the business
cycle fluctuations 7

Finally, the model seems well suited to analyze how behavioral heterogene-
ity affects aggregate outcomes. Relatedly, it also highlights a few sources of
potential conflict between individual and collective rationality. It is indeed an
established result that in the presence of externalities and dynamic increasing
returns of some kind, one should not in general expect the dynamics generated
by self-seeking agents to correspond with the socially optimal one. Abandoning
the ‘representative agents’ compression of the microeconomics of innovation and
allowing for e.g. heterogeneity in the firms’ willingness to explore, makes the
point even more vividly clear: there is no reason to expect that a decentral-
ized economy would handle the dilemma between ‘exploration’ of novelty and
‘exploitation’ of incumbent knowledge the same way as an omniscient (and be-
nign) planner would!®. Moreover, by relaxing the assumption of hyper-rational
agents with correct technological expectations, one is also able to consider those
circumstances where collective growth finds its necessary condition in the pres-
ence of a number of ‘irrational’ entrepreneurs.

3 The Model

Think of a knowledge base (i.e. a technological paradigm) as a metaphorical
‘island’ on a stochastic n-dimensional lattice (in the following 2-dimensional for
simplicity). Each island is characterized by dynamic increasing returns, associ-
ated to knowledge-accumulation, which drive the exploitation of any knowledge
base. However, notionally unlimited opportunities exist. Hence, at each point
in time, firms might introduce in the system ‘radical’ innovations, while, as
time goes to infinity, whatever economic performance measure may go to infin-
ity as well. Moreover, we assume that individual efforts of ‘exploration’ slowly
yield a collective externality, via, first, diffusion of knowledge, and, second,

‘incremental’ improvements upon specific knowledge bases!?.

18But any actual planner, too, would fall well short of that standard, being equally ignorant
of long-run learning opportunities.

19The distinction between ’incremental’ and ’radical’ technical progress (i.e. between
paradigm changes and within-paradigm improvements) is increasingly accepted also in other
modeling perspectives: cf. for example Cheng and Dinopoulos (1992), Jovanovic and Rob
(1990), Amable (1995). Similarly, the issue of a time-consuming (and/or resource-consuming)
adaptation and diffusion is beginning to make inroads also into equilibrium growth models:
cf. Jovanovic and McDonald (1994), Jovanovic (1995) and Jones and Newman (1994). In the
model below we especially emphasize ’creative destruction’ aspects of technological discon-
tinuities, with relatively lower attention to the possible complementarities among them (on
this point, in the formal growth literature, cf. A. Young (1993)). However, note that the
complementarity aspect is implicit in the model’s assumption that agents are able to ’carry
over’, so to speak, part of their previous production skills to new knowledge bases.



Search (i.e. exploration of new islands) and imitation require a resource
investment, which, as a first approximation, it is assumed to be equal to the
opportunity cost of generating no output. Labor is the only formally accounted
input - although one can easily think of a much higher dimensionality of the
actual search and production input spaces as ultimately projected into labor
productivity dynamics.

In this spirit, the economy is represented as a set of production activities,
‘spatially’ distributed on the 2-dimensional integer lattice X2 = {1,2,...}2, and
it is composed of a fixed population of agents I = {1,2,... ,N}, N < 00, and a
countable infinite number of islands, indexed by j € R. There is only one good,
which can be ‘extracted’ from every island. Time is discrete and the generic
time-period is denoted by t € X U {0}.

The lattice, i.e. the sea, is endowed by the ‘Manhattan’ metric d;. Each
node (z,y) € X2 can be either an island or not, while each island has a size of
one node. Let p(z,y) be the probability that the node (z,y) € N? is an island.
We will assume throughout that p(x,y) = 7, all (z,y) € N2, where 7 € (0,1)2".

Each island j € N is completely characterized by its coordinates (z;,y,)
in the lattice together with an initial (or intrinsic) ‘productivity’ coefficient
sj = s(xj,y;) € Ry.

Without loss of generality, we suppose that, at time ¢ = 0, the population
is randomly distributed on a (small) set of islands Lo = {1,2,...,0p} € N and
that productivity coefficients s; are uniformly distributed with mean d;(j) =
di[(zj,y;)] = z; +y; , 7 € Lo, so that, on average, the performance of a
‘mine’ increases with its distance from the origin of the lattice. All agents
are then initially mining inside the smallest box containing islands in Lyg, i.e.
By = {(z,y) € N2 : o < 2} and y < yi}, where 2§ = max{x;, j € Lo}
and y§ = max{y;, j € Lo}?'. In Fig.1 a very simple example of a conceivable
initial configuration of the economy is depicted in order to make clearer the
above assumptions.

Finally, assume that each agent i € I has an exogenously determined will-
ingness to explore defined by the scalar ¢; € [0, 1].

3.1 Dynamics and Endogenous Novelty

Let us turn now to describe how the economy evolves. At time ¢t = 1,2,...
each agent can be in one of three different states, namely be a ‘miner’, an
‘explorer’ or an ‘imitator’. Let a;; the state of agent ¢ € I at time ¢, where
a;; € {‘mé’,‘ex’,sm’}, and denote by j € N the island currently occupied by
the ‘miner’ ¢ € I, i.e. the agent ¢ € I such that a;; = ‘mi’.

Agents are allowed (with a certain probability) to leave the island they are
working on, gradually explore the lattice around and, possibly, discover previ-
ously unexploited (and possibly more productive) islands. In order to illustrate
how this is capture in a formal way, we need some additional notation.

Denote by my(z;,y;) the number of miners working on island j € X at time
t. Then, define an island j € X to be ‘known’ at time ¢ if m,(x;,y;) > 0 for at
least a 7: 0 < 7 <, i.e. if it currently has some people on it or if it was so at

20In Section 7.2 this assumption will be however relaxed.
21This does not mean, however, that islands j = 1,2,... (both in Lg and in R — Lg) are
sorted (in some way) by their distance from the origin.



least some finite time in the past. Accordingly, let the set of currently ‘known’
islands be given by:

Ly={jeXN:30<7<t:m(zj,y;) >0} (1)

Among all known islands, let us call ‘colonized’ those currently exploited,
ie. all j € Ly : my(z;,y;) > 0. Conversely, all islands in X — L; will be called
‘unknown’, since no agent has previously exploited them. Furthermore, denote
the cardinality of L; by ¢, and the current location in the lattice of agent ¢ € I by
the pair (2, yi¢). Finally, similarly to Lo, consider the smallest box containing
all islands in Ly, i.e. let

Bt:{(m,y)ENQ:xSx’t" and y < y;} (2)

where 27 = maxz{z;,j € L;} and yf = maxz{y;,j € L;}. Since the node
by = (z7,y;) will only coincide by chance with a ‘known’ island, we can think of
by just as a ‘proxy’ of the most efficient island (i.e. the best practice) currently
exploited by the agents®?.

The model allows for an endogenous dynamics on the set L; and, conse-
quently on the box By, in the sense that L; changes through time because of the
actions of agents in I. A crucial distinction has to be made here between what
we will call the ‘currently realized’ economy and the economy tout court. As the
box B, contains all exploited technologies up to time ¢, it therefore represents
a proxy of what is actually at disposal of the economy, i.e. the current set of
‘fundamentals’ or the ‘realized economy’.

However, outside B; there is a whole - eventually better - world waiting to be
discovered. The model depicts precisely the process of the gradual endogenous
discovery of the economy by the agents themselves. Hence, given the endogenous
nature of innovation/imitation activities, it is crucial to account for the process
by which agents in different states make ‘crucial decisions’, i.e. irreversible
choices that change forever the economic environment®®. Let us consider the
production process, first.

3.2 Production

A ‘miner’ ¢ € I currently located on island j € L; with co-ordinates (z;,y;),
will necessarily get, at no cost, a (gross) output ¢;; according to the simple
production function:

@i = s(xj,y5) [ma (0, y;))%7" (3)

where s(z;,y;) is the initial ‘productivity’ coefficient defined above, my(z;,y;)
is the number of ‘miners’ currently working on island j and « > 0. Hence, the
current total (gross) output of island j € L; and the economy total (gross)
output (GNP) will be:

22Unlike most neoclassical models, generally based on technical change embodied in different
vintages of equipment - c¢f. Solow (1960) and Kaldor and Mirrlees (1962) - at any given moment
in time there is no a single best-practice technique, but many competing technologies located
near the frontier of the box By, see also Silverberg et al. (1988).

23See also Shackle (1955) and Davidson (1996) for some hints in a similar spirit.



Qi y;5) = s(xy,y;5)[me(zj, y;)) (4)
and

Q=Y Qulzj,y;) (5)

JEL,

In principle, three ‘returns to scale’ (RTS) regimes can be defined, namely:
(i) 0 < a < 1, RTS are individually negative and technologically decreasing; (ii)
1 < a <2, RTS are individually decreasing but technologically increasing; and,
finally, (iii) if @ > 2, RTS are both individually and technologically increasing.
In the following, however, we will mainly focus on technologically increasing
RTS, i.e. on cases (ii) and (iii) (cf. also Section 5.1).

3.3 Exploration and Innovation

At time t, each miner has the opportunity to become ‘explorer’. For the sake
of simplicity, we will assume here that this happens with probability €; = €, for
all i € I which are in the state of ‘miner’>*. As soon as a ‘miner’ currently
working on island j € L; decides to become ‘explorer’ (i.e. air+1 = ‘ex’), it
leaves its island, ‘sailing’ around until it finds another one - possibly not known.
Notice that, up to now, we have not endowed agents with any ‘forecasting’ skill.
However, when a ‘miner’ leaves its island at time 7, we let it carry the memory
of the last output which the agent was able to get in the state of ‘miner’ (i.e.
its past knowledge and skills), that is ¢; -.

During the search, explorer ¢ does not extract any output and, from time
t + 1 on, moves through the lattice following the ‘naive’ stochastic rule:

P’rOb{(Ii,t+17yi,t+1) = (xvy)‘(xi,tvyi,t)} =

it [z —mig| ]y —yiel =1

2
otherwise all (z,y) €R

O =

-

that is, at each time period, the ‘explorer’ moves from its current node
(24,4, Yi+) by randomly selecting one out of the four adjacent nodes. This simple
behavioral rule implies that, for any (£,v) € 82

Prob{(z; 4, Ys,0) = (2g£E, yo+Y) (25 0,¥i0) = (29, 90)} =
(7)
(ﬁ)(i)éﬁt if t<d and [(t,d) odd or (t,d) even]

2 2

- { 0 if t> dor (t odd and d even) or (d odd and t even)

24Tn Section 7.3 this assumption will be relaxed, allowing for heterogeneous willingness to
explore.



where ¢ = [ — 1| € XN and d = £ + ¢ € N. Notice that we are assuming that
agents are not aware of the fact that islands are (on average) more and more
productive the further away one goes from the origin of the lattice. Indeed, the
expected distance from the starting island after k& periods of exploration is 0, as
by (7): E[(i,t1k, Yi,erk) (T, Yi)] = (Tit, Yist)-

The new location of the explorer (z; 141, ¥;,++1) might obviously be: (i) ‘sea’;
(i) a ‘known’ island j € L;; (ili) a ‘new’ island j € N\L;. In the first case,
ie. (@igy1,Vit+1) # (zj,y;) for all j € N, we still have a;441 = ‘ex’ and
the exploration goes on. In the second case, there will be a j € L; such that
(4,041, Yi+1) = (z4,y;) and hence the explorer i € I becomes miner on j € Ly,
ie. aji41 = ‘mi’.

The third case is the most important. Suppose, for simplicity, that at time
t each explorer is allowed to find new islands only outside the box B;*®. As
stated above, the node occupied by the ‘explorer’ ¢ € I at time ¢ + 1 could be
a ‘new’ island with probability 7. In case of discovery, the new island j* with
co-ordinates (2, y;+) = (Tit+1,Yit+1) is added to the set of ‘known’ islands,
ie. Lyy1=LyU{5*} and {;41 = £;+1. Moreover, both the set B( ) and the ‘best
practice’ proxy (x’(“.),yz)) are accordingly updated.

3.4 Path-Dependence and ‘Ordinary’ vs. ‘Extraordinary’
Discoveries

In the model we allow discoveries to be either ‘ordinary’ or, to different extents,
‘extraordinary’. In order to capture the distinction from the innovation litera-
ture between innovations within existing knowledge bases and the introduction
of radically new ‘technological paradigms’ (Dosi (1982)), the ‘initial’ productiv-
ity coeflicient of a ‘new’ island j* discovered by the ‘explorer’ i € I carrying the
output memory g; -, will be given by:

sj = s(@je yj) = L+ W) Adi[(zj+,y;)] + ¢ - @i,r + @} (8)

where di[(z;+,y;+)] = xj+ + y;= 18, as usual, the distance of j* from (0,0); W
is a random variable distributed as a Poisson with mean A > 0; @ is a uniformly
distributed random variable, independent of W, with mean zero and variance
0w and, finally, ¢ € [0,1]. The interpretation of Eq. (8) is straightforward.
The initial productivity of a ‘new’ island depends on four factors, namely: (i)
its distance from the origin (as for initial islands); (ii) a cumulative learning
effect directly linked to the past ‘skills’ of the discoverer, i.e. ¢ - ¢;-; (ili) a
random variable W which allows low probability ‘jumps’, that is, changes in
technological paradigms?®%; (iv) a stochastic i.i.d. zero-mean noise w.

Two considerations are in order. First, the mechanism through which in-
novations are introduced in the economy is both path-dependent (see Arthur
(1994)) and influenced by random (small) events (cf. Arthur (1989) and David
(1992a,b)). On one hand, a large ¢ implies that more skilled ‘explorers’ (i.e.

25 - . . .
“9This is not a necessary assumption, however. As we will see below, the economy is
naturally driven, although only on average, toward more efficient islands by the process of
diffusion of information, so that the event of finding a new island inside Ly is in fact irrelevant
in our description.
26 As happens in Nelson and Winter (1982) or Silverberg and Verspagen (1994), innovation
is a local process.
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more efficient past ‘miners’) are likely to discover more productive islands and
to produce more in the future, thanks to a sort of ‘learning-to-learn’ mechanism
(cf. Stiglitz (1987)). Moreover, the stochastic nature of innovation, together
with increasing returns associated with learning by doing (as in Arrow (1962)
and Parente (1994)), allow even ‘ordinary’ discoveries to drive the process of
growth. Second, notice that, as by independence:

Es(zje,y5-) = (L+ A)[(2j- +yj2) + ¢ - gir] 9)

then, on average, a larger \ lets ‘extraordinary’ discoveries to be more likely
in the economy. The parameter A\, together with 7, are measures of the degree of
notional ‘opportunities’. Indeed, a large A lets, in expectation, the productivity
of a newly discovered island to be sensibly larger than those associated to the
currently ‘known’ islands; likewise, a larger m implies a larger average number
of per-period discoveries.

3.5 Interactions, Diffusion of Knowledge and Imitation

Due to the uncertainty of the exploration process and to within-island dy-
namic increasing returns, the system provides an incentive for both ‘miners’
and ‘explorers’ to imitate the most productive islands existing in the ‘currently
realized” economy. In the model we formalize a process of local diffusion of
knowledge which tries to capture some basic features of empirically observed
patterns of imitation and diffusion?”.

Let my be the number of ‘miners’ currently present in the economy. At
time t, the agents mining on each ‘colonized’ island j € L; deliver a signal
which is instantaneously spread all around. Signals are characterized by an
intrinsic intensity proportional to the share of miners present on j € L; - i.e.
my(zj,y;)/me - and a content given by the actual productivity of the island -
ie. Q¢(zj,y;)/me(zj,y;). Moreover, they decay exponentially with the distance
from the source, so that the actual intensity with which a signal delivered from
(z,y;) reaches an agent currently located at (z,y) is given by:

mt(xjv yj)

wi(z,Y557,Y) = exp{—pllz — x|+ |y —y;ll}, p>0 (10)

A signal delivered at (z;,y;) will be received by agent i located at (z,y)
with a probability proportional to wy(x;,y;; x,y). Agent i will then collect the
‘contents’ of all received signals (those coming from, say, islands whose indices
are {j1,..., jz} C L, where { < ¢, is a random variable) and contrast them
with its own performance. The latter is simply agent ¢’s current productivity if
it is a ‘miner’ (say on island j), or the ‘memory’ on the productivity of its island
of origin (say, j), if it is an ‘explorer’. Hence, it will choose among the (+1
available options by drawing an element from the set {4, j1,...,j;} € L, with
probabilities proportional to the associate productivities. If the choice is j, then

27See for instance Nelson and Winter (1982), David (1975); Dosi (1988, 1991), Freeman
(1994). Cf. also, along the same lines, Jovanovic and Rob (1989) and Jovanovic and McDonald
(1994).
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it will decide not to imitate any island but rather to remain in the current state.
Otherwise, it will become an ‘imitator’ - i.e. a; 41 = ““m’ - and it will move
toward the imitated island, say (a/,y/), reaching it after k = dy[(x/, y/); (z,y)] =
|z — x!] + |y — y/| time periods - i.e. making one step per period and following
the shortest path?®. Finally, once the imitated island is reached, it will turn
again its state into ‘miner’, i.e. a; 4p41 = ‘Mi’.

The processes of production and knowledge diffusion govern interactions in
the model??. First, agents locally interact in an indirect and deterministic way in
the mining process. The parameter «, by tuning dynamic increasing returns to
scale at the island level, also measures the strength of the incentives to converge
on the same technologies - i.e. conformist effects. Second, firms interact in a
direct and local way by means of the knowledge diffusion process: on average,
firms’ behaviors are directly affected by the stochastic signals coming from those
agents which, on average, are currently closest in the technological space (i.e.
the lattice). Here, the parameter p > 0 tunes the ‘degree of locality’ of the
interactions: the larger p, the more the process of diffusion of knowledge is local,
since signals will tend to reach, in probability, only the ‘nearest neighbors’. Two
extreme cases are: (i) p=0, i.e. interactions are global, as information diffusion
does not depend on the distance between source and receiver; and (ii) p = oo,
i.e. no signals are spread and interactions are shut down.

Some considerations are worth noting. The model, as in many other ‘local
interaction’ setups, assumes that agents’ decisions (e.g. whether to imitate or
not, which technology to adopt, etc.) are affected by some function of the past
choices of their nearest neighbors (appropriately weighted). The kind of depen-
dence postulated is a stochastic one, in order to capture all those frameworks
where either information is imperfectly conducive or the agents themselves, faced
with a complex environment, possess no adequate skills to correctly master the
information they hold. In our model, unlike the majority of formalizations in the
literature, the interaction structure - albeit rudimentary - does change in time.
In fact, as agents gradually explore the technological space and move across the
lattice, they are likely to modify both the cardinality and the composition of
the set of their ‘neighbors’, allowing for an evolving interaction network.

3.6 System Variables, Timing and Implementation

At each time period t = 0,1, 2, ... , the economy is completely characterized by
the following micro variables. At the technologies (i.e. islands) level: (a) the
set of ‘known’ islands L;; (b) their co-ordinates {(x;,v;),j € L:}; (c) the initial
productivity coefficients S; = {s;,j € L;}. Concerning agents, we define the
mappings:

Ay T — {'mi, fex’ “im’}
Cy: I — N2
Ot : I — §R+

28For the sake of simplicity, notice that an imitator cannot be reached by any other signal
while committed to a particular destination.

9C - - . . . . -

29For a thorough discussion on local interaction models in economics, see Kirman (1998)

and Fagiolo (1998).
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recording agents’ current states, coordinates and individual outputs.

The macro variables of interest are: (i) the triple (my, e, it) € N3, my +
e; + 1 = N, i.e. the current number of ‘miners’, ‘explorers’ and ‘imitators’ in
the economy; (ii) the pair (¢;,($) € N? (where £, is the number of currently
known islands and £§ < ¢; is the number of the colonized ones), together with
their coordinates and their initial productivity; (iii) the log of GNP, namely
g = log Q.

The timing of decisions and events occurring in a generic iteration (i.e. in
the time interval (t — 1,¢] ) runs as follows. First, given macro and micro
system variables at time ¢ — 1, agents take their decisions: miners update output
and choose whether to start searching; explorers select the next portion of the
lattice to explore (and, possibly, they find a new island); imitators continue
to approach the technologies they have chosen to adopt. Third, interactions
take place through information diffusion. Finally, all time-t system variables
are accordingly updated and the next iteration starts.

The model is an example of a so-called ‘artificial economy™’. Unless the
focus is not on particular stationary cases - as in Section 4.1 below - one is
bound to analyze its main properties by resorting to computer simulations.
Analytical solutions are not indeed achievable for the full-fledged form, because
of the underlying complication of the stochastic processes updating micro - and
accordingly macro - system variables. In Appendix 1, the pseudo-code of the
implemented computer program is reported, together with the list of all relevant
variables®!.

In the next sections we will present an extensive analysis of simulation re-
sults. The focus will be on the aggregate properties of the simulated time-series
of the log of GNP, i.e. ¢(w) = {logQ¢, t =0,1,...,T;w}, where w is a point in
the parameter space (2, that is:

weQ={(p,o,\m a,e,N,T) R x [0,1]* x R} (11)

To begin with, we will analyze how the model behaves in some ‘benchmark’
parametrizations, in order to assess the role played by knowledge-specific in-
creasing returns, imitation and exploration in the dynamics of the economy.
In particular, we will start by addressing the question of whether the model is
able to display self-organized patterns of persistent growth and - if so - under
which behavioral and system parametrizations (especially concerning the degree
of ‘open-endedness’ of the economy, as well as innovation and diffusion rates).

30Cf. Lane (1993a,b). The choice to label as ’artificial’ all economic models implemented
and run on a computer could be however criticized, at least if the term is employed with
its common meaning (something 'not genuine’). If, on the contrary, one interprets the label
‘artificial’ in another of its acceptation (i.e. ’made in imitation of something existing in
nature’), then it simply boils down to the very definition of an (economic) 'model’. The same
argument also applies to the so-called ’artificially adaptive agents’ models, cf. for example
Axtell and Epstein (1994), Holland and Miller (1991), Arthur (1993).

31Tt is not possible, of course, to provide here an overview of methodological (and philosoph-
ical) issues involved in computer simulated economic models, as well as a discussion on the
relative merits of simulated and analytically solvable models. On these topics, see Nelson and
Winter (1977), Lane (1993a,b), Silverberg and Verspagen (1995b) and Leijonhufvud (1996).
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4 The Emergence of Self-Sustaining Growth :
Closed vs. Open-Ended Economies

A key feature of the model resides in its ability to allow for an endogenous
evolution of the set of fundamentals of the economy. But, in the first place,
what would happen if one bounds, to some extent, the dynamics governing the
progressive enlargement of the technological frontier ? Put it differently, is the
economy able to generate patterns of self-sustaining aggregate growth if one
considers stationary environments where agents behave on the grounds of an
unchangeable set of fundamentals 7

In order to answer these questions, we will start by analyzing the benchmark
case of a closed economy (i.e. one in which L; = L,Vt). This will be done by
focussing on two distinct setups. In the first one, it will be assumed no possibility
of exploration (and hence innovation) whatsoever, i.e. ¢ = € = 0,Vi € I.
Therefore, agents will only be supposed to exchange information about an initial,
fixed set of technologies and eventually exploit them, but they will not be able
to endogenously introduce innovations in the system. In the second setup,
exploration (as well as information diffusion) will be permitted, but only inside
the initial ‘realized economy’. In other words, miners can become explorers with
some probability €; = € > 0, but they are only able to ‘sail’ within the box By.

Then, we will turn our attention back to the more general case of ‘open-
ended’ economies in which agents can to introduce innovations in the system:.

4.1 A Closed Economy without Exploration

When ¢; =€ =0, all ¢ € I, the model allows an analytical treatment. Without
loss of generality, assume that the economy is composed of two islands, i.e.
|Lo| = €o = 2. In this case we can neglect any spatial consideration by assuming
that the productivity coefficients (s1, s2) € fRi also represent the technological
distance between islands*?. More precisely, let (s1,s2) = (1,s),s € X, and
suppose that if a miner working on island j € {1,2} at the beginning of time
t — s decides to imitate island j/ # j, then he will reach j/ at the end of time
t — 1 and start producing at time 33.

In this simple setting, island 2 plays the role of the ‘best practice’ for s > 2,
while the case s = 1 depicts the benchmark case of homogeneous technologies®?.
Here, the dynamics of the economy is entirely driven by the process of infor-
mation diffusion (see Section 3.5) until one out of the two technologies, say j,
manages to capture all N agents. In that case, the economy would lock-in at the
steady state where total output is @* = s;IN“. As intuition suggests, however,
path-dependency entailed by increasing returns will tend to drive all agents,
through waves of imitation, toward the island with the actual (not initial) best

32When exploration is shut down and only information diffusion drives the dynamics of
the economy, the two-dimensional lattice structure - which provides an additional underlying
source of technological distances - is indeed redundant. This is not true, however, in the
full-fledged model.

33In other words, the parameter s represents the number of time periods an imitator needs
to get to the adopted technology, while the actual productivity distance between islands is
A=s—1.

34Notice that when s = 1, the information diffusion rate p plays no role, as the information
is spread and received instantaneously. Moreover, no imitators are present in the economy.
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productivity, therefore implying non-ergodicity in the stochastic process gov-
erning output evolution and, consequently, potential inefficiency.
More formally, it can be proven the following:

Proposition

Consider the stochastic process My = {(My, Mat),t > 1}, where M is the
random variable: “number of agents ‘mining’ on island j at time t”, j € {1,2}.
Given any initial distribution Py on Mjq with support {0,1,... ,N — 1, N},
Mag = N — Mo, then, for any (a, p) € R2:

1. M, is a Markov process with discrete state space {(my, ma¢) € {0,1, ...
(N2 tmy +my < N

2. If s =1 then M, is a stationary, not irreducible, Markov chain displaying
two absorbing states my = (0, N) and m_ = (N, 0);

3. If s > 2 then M, is a non-stationary Markov process with two absorbing
states my = (0, N) and m_ = (N, 0).

Proof. See Appendix 2. m

The above Proposition simply states that, for any s € R, the economy will
be ultimately absorbed either in the efficient outcome Q% = sN© or in the
inefficient one Q* = N < sN®. In order to characterize the probabilities of
absorption in either state, let us consider some deterministic initial condition
lying in the transient set, i.e. mig =mg € {1,... ,N — 1}, mgg = N —myg. It
is then of interest trying to assess how the probability of an inefficient lock-in
depends on the technological gap between the island 1 and 2 (i.e. the param-
eter s), on the strength of increasing returns (a), on the speed of information
diffusion (—p) and, of course, on the number of miners initially adopting the
inefficient technology (mg). We have:

Result
Let the absorption probability in island 1 (i.e. the inefficient limit state if
s > 2) to be defined as:

pL(mo; a, p) =
= Prob{3t" > 1:Vt >t",M, = (N,0)| My = (mo, N —mg); c, p; s}

for any myp = mo € {1,..., N —1}. Then, everything else being constant®3:
1. p® (mg; «, p) are non-increasing in s and non-decreasing in mg;

2. If s = 1, then p® (mo; @, p) are non-increasing in « if mo < N/2 and non-
decreasing in a when mgy > N/2; if s > 2, then p® (mg; «, p) are always
non-decreasing in .

35 Unfortunately, absorption probabilities cannot be computed explicitly (see Appendix 2).
However, when s = 1 one can tabulate them by means of numerical analyses. Montecarlo
techniques must instead be used when s > 2 to estimate both absorption probabilities and
average absorption times.
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3. p® (mg; o, p) are non-increasing in p when s > 2 and the magnitude of this
effect increases with s.

In order to support the claim above, Figure 2 shows some examples of the
estimation of p® (mo; @, p) for s € {1,2,3}, as (mo; o, p) vary in the relevant
parameter space, cf. Panels (a) to (c). As one could have expected, when
the initial number of ‘inefficient’ adopters is below a certain threshold (itself
increasing with the strength of returns to scale and the technological gap), then
the system will inevitably converge to the efficient outcome no matter how
large are the incentives to stick with the initial choice. However, when mg
goes through that threshold, the probability of ending up in the inefficient state
becomes strictly positive and grows as the incentives to knowledge accumulation
increase. In the limit, when only a few miners are initially aware of the superior
technology and returns to scale are increasing (a > 1), the probability that the
system is absorbed by island 2 converges to zero®S. Finally, when s > 2, the more
information diffusion is local (i.e. the greater p), the less the average number
of miners which leave their islands in each time period and, consequently, the
less likely the event that waves of imitation would trigger a migration from the
efficient technique toward the inefficient one (see Panel (d)). Therefore, for a
given (mg, ), the probability of being absorbed in island 1 will decrease with
p (increasingly fast as s grows).

The system parameters accordingly affect the average time of absorption, see
Figure 3. When technologies are homogeneous, lock-in time is decreasing with
mo no matter how large are returns to scale - Panel (a) - while, when s = 2, two
regimes appear: if « is small, the length of the transition dynamics leading to
absorption is only retarded as mg grows; conversely, when returns to scale keep
increasing, the relationship becomes unimodal, with the maximum shifting to
the left as a goes up - see Panel (b). Moreover, when s = 2, a smaller speed
of information diffusion (larger p) entails larger absorption time, as expected.
Analog patterns arise in the case s = 3, cf. Panels (c) to (f).

Further light on the ways in which the relevant parameters influence the
dynamics of the system can be shed by analyzing the behavior of the time evo-
lution of the conditional expectation of the number of miners currently working
on islands 1 and 2, before lock-in occurs. To that end, in Appendix 2 we study
the system of difference equations governing the evolution of such paths, i.e.
{Et<Mt‘Mt—1’Mt—27 s ;mo), t> 1}'

However, non-ergodicity of the stochastic process My implies that the actual
dynamics of the system is entirely determined by early random events character-
izing the process - cf. David (1992b) - that is by early, unpredictable, waves of
imitation. As a consequence, GNP time-series and growth rates look like those
depicted in Figure 4. In this simple setting, growth is a transitory phenomenon:
once the lock-in is achieved, no fluctuations will arise thereafter.

4.2 A Closed Economy with Exploration

Suppose now that exploration is allowed, i.e. let ¢, = € > 0, Vi € I, but only
within an unchanged set of ‘knowledge bases’. That is to say, we assume that

36 Notice also that, when technologies are homogeneous, absorption probabilities are sym-
metric around mg = N/2 for a given a; moreover, as a increases, pl (mp;a) tends to a

step-function whose value at mg = N/2 is undetermined. See Appendix 2.
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once an initial set of islands Lg is drawn, the probability of finding new islands
is zero, i.e. m = 0, and that explorers are allowed to search only inside the fixed
‘realized economy’ defined by the box By.

In this setup, agents are still not able to ‘innovate’ (i.e. to discover islands
other than the already ‘known’ ones) and must necessarily exploit the existing
technologies. However, unlike the previous case, they can always decide to leave
the island they are working on, even though all agents are mining on it.

All that introduces a potential source of ‘irrationality’ and ‘idiosyncrasy’ in
individual behaviors. Although the decision to become explorer is not linked -
in this version of the model - to any system variable, it is tempting to define
this behavior as a ‘nonconformist’ one, as in a few models of ‘social interaction’
and ‘herd behavior’3”. Indeed, when exploration is allowed, the lock-in of the
system will not generally occur, since there is always a positive probability that
‘non conformist’ decisions will induce phase-transitions in the system.

In a two-islands setup, the economy is characterized by the Markov pro-
cess M, (as before), together with the stochastic process describing the current
number of explorers. However, unlike the previous case, transition probabili-
ties are not only influenced by the propensities to imitate technologies with a
higher revealed efficiencies, but also involve a certain probability of ‘exploring’.
Islands represent here ‘basins of attraction” among which the system continually
oscillates®®.

The stochastic process of exploration/imitation yields persistent output fluc-
tuations but only transitory growth. Indeed, as depicted in Fig.5, the simulated
time-series of GNP display a stationary autoregressive pattern - as economet-
ric analyses (not reported) usually show. Over finite time periods, increasing
returns and knowledge diffusion induce agents (on average) to move toward cur-
rently more efficient islands - cf. Figures 6(a) and 6(b) for the two cases s1 = s
and s; < sg. However, exploration allows with positive probability ‘de-locking’
bursts, also toward notionally less efficient islands. In a sense, persistent fluc-
tuations are in this case generated by a problem of imperfect Schumpeterian
coordination in presence of dynamic increasing returns to learning”.

4.3 Exploring in an Open-Ended Economy: Some Quali-
tative Results

In both stationary environment analyzed so far, self-sustaining growth could
emerge only if one superimposes an exogenous Solow-like drift on the best-
practice production function. Otherwise, as long as agents behave on the
grounds of fixed fundamentals, economic growth is a temporary phenomenon.

Consider now the more general case where ¢, = ¢ > 0, Vi € [ and the
economy is open-ended. In this full-fledged setup, firms are able to endogenously
induce a drift in the technological frontier, in ways that are both path-dependent
and imitation-driven.

It turns out that the economy exhibits, for a wide range of parameters,
patterns of self-sustaining growth. Typically, the simulated time-series of GNP

37See Kirman (1993), Brock and Durlauf (1995), Hirschleifer (1993).

38 These properties are quite similar to those displayed by models based on Fokker-Planck
equations. Cf. also Kirman (1993) and Orléan (1992).

39 Notice here the loose analogy with the coordination-related dynamics treated by Cooper
and John (1988) and Durlauf (1994).
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are exponentially shaped, so that its natural logarithm displays a linear trend,
as in Figure 74Y. However, exponential growth is not the sole rough regularity
in output patterns that open-ended economies are able to generate. Indeed, in
other regions of the parameter space, the model can mimic either ‘mild growth’
economies, whereby the GNP time-series fluctuate around an S-shaped trend
and long-run growth rates tend to become a mean-zero stationary process - cf.
Figure 8(a); or ‘no growth’ ones - see Figure 8(b) - as in the stationary setup
with exploration discussed in Section 4.2.

Under parametrizations yielding self-sustaining growth*!, the model exhibits
some additional interesting regularities. First, the time series of the number of
‘miners’, ‘explorers’ and ‘imitators’ can typically be described as stationary
processes, see Figure 9.

Second, although the number of currently ‘known’ islands displays a linear
time trend, both the ratio between ‘colonized’ and ‘known’ islands, and the
number of ‘colonized’ ones - Figure 10(a) and (b) respectively - fall quickly
and then follow a stationary process. Hence, starting from a fairly uniform
distribution of N agents on the initial set of ‘known’ islands Lg, diffusion of
knowledge is likely to drive agents to concentrate on (i.e. ‘colonize’) a relatively
small cluster of ‘known’ islands which, by dynamic increasing returns, might be,
often but not always, the most efficient ones. In general, the expected size of
the clusters of colonized islands is likely to increase as returns to scale and path-
dependency get smaller; the probability of finding an island increases; agents
are more willing to explore; and/or information diffuses more locally.

Third, since the number of ‘explorers’ follows a stationary pattern, the aver-
age per-period number of ‘discoveries’ keeps constant. Moreover, as the symme-
try of the ‘exploration’ rule should suggest - cf. Eqgs. (6) and (7) - the distance
from the origin of any new technology increases linearly with the number of
discovered islands - see Figure 11(a). However, the path-dependent nature of
innovation implies that the initial productivity of a new island (i.e. the coef-
ficient sj+) is generally greater than the average current productivity over all
‘known’ islands - cf. Figure 12 - while the one-time push irregularly caused
by the introduction of ‘new paradigms’ keeps the order of magnitude of initial
productivity of new technologies constantly above their distance from the origin
- see Figure 11(b).

Fourth, relatively ordered spatial patterns of colonized islands are likely to
emerge, due to the local nature of both the exploration and imitation processes.
In Figure 13, the path of expansion of the ‘best practice’ proxy b} is plotted,
together with four ‘snapshots’ showing the locations of currently ‘colonized’
islands in the technological space for different time periods ¢ = 0, 500, 1000, 1500.
While in the early time periods of the simulation small (stochastic) events select
the region of the lattice where exploration is going to take place, the path-
dependent nature of the overall process tends to keep the economy inside that
region. In such a situation, ‘rare’ events (i.e. the exceptional discoveries),
feeding path-dependently upon diffusion and incremental innovations thereafter,
might be able to trigger a self-reinforcing process whose ultimate outcome could

40More on the statistical properties of simulated GNP series is in Sections 5.2 and 6.

41 All results reported in this sub-section refer to the parametrization: 7 = 0.1,p = 0.1,¢e =
0.1,A=1,90=0.5,N =100, = 1.5, = 1000, but they robustly arise in all setups yielding
exponential growth. See Section 5.1. for an extensive Montecarlo analysis of the parameter
space.
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be a pattern of exponential growth. Indeed, some ‘lucky’ explorers - which have
decided not to imitate one out of the cluster of colonized islands - will eventually
find intrinsically superior islands outside the ‘realized economy’. Although they
might not be able to adequately exploit the opportunities of the ‘new’ island by
themselves, the ‘extraordinary’ character of their discovery might nevertheless
induce other agents to move there in the future and, consequently, increase its
actual productivity.

Finally, accordingly to empirically detected patterns of innovation, diffu-
sion and adoption (see e.g. Dosi (1982)), the model generates S-shaped dif-
fusion curves in the number of agents currently mastering a given technology.
Moreover, because many techniques are allowed to coexist over the same time
intervals if they exhibits sufficiently similar realized productivities, one usually
observes overlapping diffusion patterns as those depicted in Figure 14. As the set
of current available technologies keeps enlarging due to the unceasing process of
exploration and innovation, firms migrate from less toward more productive is-
lands, entailing processes of innovation diffusion which occur at different rates.
As Figure 15 shows, the latter typically depend on the characteristics of the
technologies involved in the process, the incentives provided by the economic
environment and the features of the adopters themselves. In very general terms,
the speed at which innovations are adopted (and substituted) is increasing in
both their absolute intrinsic productivity gap and the extent to which interac-
tions are global - cf. Panels (a), (b) and (d). Also, if information is diffused not
too locally, radical innovations tend to retain their leadership much longer than
incremental ones (see Panels (a) and (b)). Yet, the rate at which innovations are
substituted is decreasing with the average willingness to explore of the agents
in the system - cf. Panel (c).

5 The Sources of Self-Sustaining Growth : A
Montecarlo Analysis

A basic insight stemming from the foregoing qualitative analysis is that, in
order for the economy to be able to attain self-sustaining growth, the following
conditions (or a suitable mix of them) ought to apply, namely: (i) production is
characterized by increasing returns (a > 1); (ii) the level of both opportunities
(as measured by A and 7) and willingness to explore (¢€) is sufficiently large;
(iii) knowledge diffusion is not too ‘local’ (p small); (iv) there is some path-
dependency in innovation (¢>0). However, the presence of direct interactions
among spatially distributed agents, as well as non-linearities in microeconomic
behaviors, suggests that threshold effects and non-monotonic relationships are
likely to emerge as one attempts to map sub-regions of the parameter space into
robust aggregate regularities characterizing growth patterns.

In this section, we will present extensive Montecarlo (MC) analyses support-
ing the above conjectures and further investigating their implications.

More specifically, we will consider M independent realizations of g(w), i.e.
a simulated log(GNP) time-series for a given parametrization w €  and de-
fine Q(M,w) as the T x M matrix whose m-th column is given by: ¢,,(w) =
(gm0, - - s Gm,7]’- Let us also set Ay (w) = [Amai(w), ..., hm,T(w)]_’, where
hmt(w) = [(Qmt — Qmi—1)/CQm—1], and call H(M,w) the T x M matrix
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whose M columns are made by MC growth rate time series h,,(w). Given any
statistics S : R — R, mapping gm(w) into a k-valued real vector, our interest
is in assessing how the sample moments of the MC distribution of S - e.g. means
and standard deviation of S(w) = {S(g, (w)),m =1,..., M} - depends on wi?,

In Section 5.1, we shall firstly present a study of how the overall performance
of the economy, as measured by its average growth rate (AGR) S(q, (wv)) =

I (W) = [(@m,7/qm,0)" T+ —1], is affected as w varies in Q*. Next, in Section
5.2 we will try to investigate the emergence of stochastic non-stationarity in
log(GNP) time-series, in order to attempt to distinguish those sub-regions of the
parameter space which are able to generate (with sufficiently high likelihood)
patterns of self-sustaining growth. Finally, in Section 5.3, we will turn our
attention to output growth rates matrix H(M,w), so as to discuss some finite-
time properties of the average within-simulation growth-rate volatility and its
long-run behavior in different growth regimes.

5.1 Economic Performance and the Exploitation - Explo-
ration Trade Off

A first clear-cut result that MC simulations point out is that - everything else
being constant - the overall performance of the economy, as measured by its
AGR, appears to be monotonically increasing with respect to: (a) the extent
to which the system is fueled with innovation ‘opportunities’ (i.e. both A and
7); (b) the magnitude of path-dependency affecting the innovation process (i.e.
©); (c) the degree of globality of the information diffusion in the interaction
process (i.e. —p). Support to this general conclusion is presented in Figure 16,
where MC sample means of AGRs (i.e. g, (w) = M * 2%21 gm(w)) are plotted
against (logyg p, ¢) in four distinct opportunity setups (and for given a and €).

The shape of the surfaces (logygp, ¢|-) also suggests that, while path de-
pendency linearly affects AGRs, locality of interactions is likely to induce some
threshold effects. Indeed, as Figure 17 clearly shows, when one gradually tunes
the rate of information diffusion from its minimum (i.e. p = o0) toward its max-
imum (i.e. p =0), an abrupt change in AGRs usually arises around p*(w) = 1.0:
if p < p*(w), AGRs are barely influenced if the rate of information diffusion is
slightly altered; however, when p > p*(w), small changes in the degree of local-
ity of interactions bring about very large effects on the overall performance of
the economy.

As the economy is gradually injected by increasingly powerful sources of
growth (larger opportunities, higher path dependency and more conducive in-
formation diffusion), one should also expect an increasing MC sample volatility
of AGRs. In fact, as reported in Figure 18, a strong positive correlation usu-
ally emerges between MC sample means of AGRs and MC sample standard
deviations o,,, (w) = [M 1 2%21 92 (w)— G2, (w)]2, as the latter appear to be
monotonically increasing with either parameter, everything else held constant**.

1286e Appendix 3 for a brief discussion on the reliability of the first and second Montecarlo
moments as estimators of the 'true’ moments of the data generating process.

13 Notice that all implications presented in this Section are not affected by the particular
choice of the AGRs. Indeed, employing alternative measures of average growth rates, as
9 = [(@m,7 — @m,0)/T] or gt = [(Qm’T/Qm,O)l/(T+1) — 1], will only change the scale of
attainable growth rates. Cf. also Appendix 3.

4 For a similar property displayed by actual time-series in a cross-section of countries, cf.
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MC sample standard deviations never ‘explode’, however, as one increases the
strength of the sources of growth. Hence, despite the self-reinforcing nature
of the mechanisms triggering economic growth in the system (i.e. exploration,
innovation and production), the model yields sufficiently ordered growth paths,
which turn out neither to overlap nor converge as long as one considers sets
of GNP time-series generated by points in the parameter space far enough, cf.
Figure 19 for an illustration of such property*®.

If the degree of opportunities, path-dependency and globality of interactions
seem to engender a non ambiguous effect on the overall performance of the
economy, different regimes arise when the same experiment is carried through
with respect to the extent to which agents are willing to explore (i.e. €) and
the strength of returns to scale in the production process (i.e. «). This is not
surprising, indeed, as the latter parameters are responsible for tuning the forces
underlying the trade-off in the choice between searching and producing, the
solution to which is a key ingredient for achieving better economic performances.

In Figure 20 we have plotted some relevant portions of the surface (e|X, 7,
p, ©; +) — gy (w) to first investigate how AGRs depend on €. As one could
have expected, larger AGRs can be attained on average if the system somehow
manages to optimally solve the trade-off between exploitation and exploration
(March (1991), Allen and McGlade (1986)). It turns out, however, that one can
single out four distinct regimes in the causal relation between ¢ and MC mean
of AGRs, namely:

R1. If no interactions take place (p = oo) and opportunities are low, then
G (w) is monotonically decreasing with e - no matter how large is path-
dependency - and displays a maximum at €* = 0; since §,,(e*) = 0 (closed
economy and no information diffusion), AGRs are always negative for
€ >0

R2. If information is spread locally (i.e. 0 << p << o0), then, irrespective
of path-dependency and opportunities, g,,(w) are decreasing for small e,
increasing when € is large, and exhibit two maxima at €* =0 and €* = 1;

R3. If information is spread globally (p = 0) and path-dependency is high, then
s (w) is monotonically increasing with e, independently of opportunities,
so that a maximum arises at €* = 1;

R4. Finally, in all other ‘intermediate’ cases, i.e. either global interactions and
low path-dependency or no information diffusion and high opportunities,
G (w) exhibits an interior maximum 0 < €* < 1.

Fatas (1995).

451n Figure 19 we plotted the time-series describing the 5% and the 95% percentiles of the
MC distributions g¢(w) = {gm,t(w),m=1,... ,M},ast =1,...,T, in four different parame-
ter setups (M = 16000). Notice that even in the global information / high opportunities case,
the band including the 90% of MC observations does not enlarge as T grows. Moreover, 90%
bands do not overlap even for very small econometric sample sizes. Furthermore, additional
simulation exercises seem to support the following general conjecture. Let d be a metrics mea-
suring the distance between any two MC samples g(M,w’) = {gm(w’),m = 1,... ,M} and
q(M,w") = {gm(w”),m=1,... , M}’ ,w” € Q. Then, for any MC sample size M, there will
exist an upper bound 927 > 0 - decreasing in M - such that, taken any 0 < ¥ < 937 and w € €,
it should be always possible to find a d(¥p,w) > 0, so that in the d(d s, w)-neighborhood of
w one can find a w’ € Q : d[g(M,w), ¢(M,w")] > 9.
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The interpretation of the above evidence is straightforward. When informa-
tion diffusion is not active, no newly discovered technology can exploit increasing
returns to scale and exploration is totally harmful (because, in the long run, it
leads to negative AGR). Conversely, economies in which information is globally
diffused and innovators strongly benefit from learning by doing (high ¢) typ-
ically maximize their AGR when all agents commit themselves to exploration
and production on new islands only lasts one period.

As information diffusion becomes local, the overall performance of the econ-
omy increases either if few explorers are around or if there are many. In the
first case, a large population of miners can continually exploit both increasing
returns to scale and incremental, path-dependent innovations through small-
scale migrations driven by local imitation. In the second one, still thanks to
local information diffusion, small clusters of colonized islands can immediate
benefit from the large-scale introduction of innovations.

The most interesting regime, however, arises when MC mean of AGRs are
maximized by an interior value of €. The intuition here corresponds to that
suggested in March (1991, p.71). As he points out, systems that engage in ex-
ploration to the exclusion of exploitation “exhibit too many undeveloped new
ideas and too little distinctive competences”, while, at the opposite extreme,
they “are likely to find themselves trapped in sub-optimal stable equilibria”. In
the model, this condition applies in two setups, namely: (a) agents face very
large opportunities but they are unable to completely exploit returns to scale
because information is not spread around; (b) interactions are global but knowl-
edge does not accumulate as the economy evolves. In both situations, higher
economic performances cannot be attained by entirely committing themselves
either to technological search or to production. As a result, the losses stemming
from the exploitation-exploration trade-off are minimized by an appropriate
balance between the two forces, which, however, agents are unable to correctly
evaluate ex-ante.

Let us turn now to discuss how «a affects the overall performance of the
economy. In very general terms, larger values of « should imply, above some
thresholds, higher returns from exploitation. Consequently, imitation should
drive agents, on average, to concentrate on the most efficient islands (no matter
if they are newly discovered or already ‘colonized’). However, the extent to
which this process is able to entail larger AGRs strongly hinges on the features
of information diffusion and the amount of opportunities in the economy.

Some paradigmatic examples of the surface (a|\, 7, p,¢;-) — G (w) are
plotted in Figure 21. First of all, notice that, as long as information is globally
diffused in the economy, AGRs are monotonically increasing in o for any (A, )
and . In this case, irrespective of the RTS regime, no trade-off between ex-
ploration and exploitation arises: agents easily manage to move toward islands
with larger actual productivities so that higher a’s imply better performances.
Conversely, when interactions are shut down (p = o), miners tend to remain
locked into sub-efficient states, especially when opportunities are low. In this
case, both explorers and miners are likely to be captured by inefficient tech-
nologies which have been exploited in an extensive way during early periods
of time. As a consequence, MC means of AGRs tend to be decreasing with
« when opportunities are low and only mildly increasing for large a’s when
they are high. The latter pattern arises more vividly when interactions are lo-
cal (0 < p < o0). Here a threshold effect emerges, as g,,;(w) starts growing
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with « only after RT'S become both technologically and individually increasing
(i.e. @ > 2). To understand this nonlinear effect, recall that the two-stage
procedure governing interactions requires that agent ¢ € I, whose last output
on j* was gir = sj= - [my(zj+,y;+)]* 1, would choose to imitate the signal
already received from island j # j* with a probability proportional to j’s ac-
tual productivity s;[m:(z;,y;)]*~", while he would decide to remain on j* with
probability proportional to g; -. Thus, in general, imitation begins to trigger a
strong self-reinforcing process of knowledge accumulation when a > 2. There-
fore, if information is locally diffused agents tend to be trapped into inefficient
islands for small o’s, whereas they will be able to fully exploit the economy’s
opportunities when RTS are large enough to promote not wasteful migrations.

5.2 Stationarity vs. Stochastic Non-Stationarity of GNP
Time-Series

Better overall economic performances (e.g. higher average GNP growth rates)
seems to be generated in the system - above certain thresholds - by a syner-
getic mechanism involving in non-additive ways innovation, path-dependency,
increasing returns and diffusion of knowledge, and not by any of these forces
taken in isolation. But, in the first place, is there a well-defined mapping be-
tween larger magnitudes of AGRs and the emergence of patterns self-sustaining
growth ?

As a first approximation, one might attempt to discriminate regions of the
parameter space () yielding patterns of self-sustaining growth from those in
which growth is only a transitory phenomenon, depending on whether log(GNP)
time-series ¢,,(w) display an (1) pattern or turns out to be stochastically sta-
tionary once standard ADF tests are performed?®.

Some examples of such an exercise are presented in Figures 22. Given low
or high opportunities setups as before, we have firstly computed the percentage
of acceptance of ADF(1) test statistics t1(gm +(w)) - at 5% of significance - over
M = 10000 independent MC simulations as a function of the degree of globality
of information diffusion (p) and path-dependency in knowledge accumulation
(¢) - for some given willingness to explore (€) and returns to scale (a)*.

Similarly to the AGRs case, the mean of MC distributions of ¢1(gm,(w))
are increasing exponentially with p and linearly with ¢ (see Panels (a) and

16Ty the model, exponential growth is usually associated with ’'difference stationary’
log(GNP) time-series. In fact, according to standard ADF tests - and irrespective of the
employed Dickey-Fuller regression specification - one is always unable to reject (at 5% of sig-
nificance) the null of a unit root, which, on the contrary, is systematically not accepted for
both first differences Agm,t and growth rates ho, ¢. In Table 1 we report as an illustration the
results of ADF tests performed on the GNP time-series displayed in Figure 7. See however
Section 6 for a discussion on the drawbacks (in particular, lack of power against nearby sta-
tionary alternatives) of ADF tests and for additional statistical properties of simulated GNP
time-series.

47 The choice of ADF(1) tests - constant and trend included - has been suggested by a pre-
liminary experiment in which an extensive battery of conventional Dickey-Fuller regressions:
Agm,t =Yg + 0t+ V1qm,t—1+ P1AGm t—1+ ... + P AGm, t—k+ ut has been estimated for a
small subset of points in the parameter space. All diagnostics (Schwartz, Akaike, etc.) have
indicated that k = 0 is inadequate while & > 2 is unnecessary (and therefore wasteful of
degrees of freedom). Also, notice that this choice for k is in line with the current literature
testing for trend vs. difference stationarity in empirical GNP time-series, cf. Diebold and Sen-
hadji (1996). Note also that the results presented here are sufficiently robust across different
parametrizations of willingness to explore and returns to scale.
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(b)). This implies that the null hypothesis (i.e. presence of a unit-root in the
log(GNP) time-series) is accepted with an increasing MC frequency as one tunes
up the sources of growth. In fact, a sort of threshold emerges in the (¢, log;q p)-
plane: beyond some given combinations of path-dependency and globality of
interactions the model delivers almost always difference-stationary log(GNP)
time-series. In addition, the portion of the (,log;qp)-plane containing MC
frequencies of the ADF(1) test acceptance greater than 90% is larger the greater
the magnitude of opportunities, as expected.

Results in line with the analysis in Section 5.1 also arise when one investigates
how the MC acceptance frequency of the ADF tests varies with the magnitude
of the willingness to explore (¢). According to the evidence presented above for
AGRs, four regimes can be singled out as far as the emergence of patterns of
self-sustaining growth is concerned. Apart from the trivial results of regime R1
(always yielding negative AGRs and then I(0) patterns), Figure 23 illustrates
what happens to ADF (1) 5%-acceptance frequencies in regimes R2, R3 and R4.
An interesting insight is that, because of the positive correlation usually arising
between the likelihood of I(1) GNP patterns and large magnitudes of AGRs,
one is likely to get some within-regime variation in the behavior of acceptance
frequencies. To see this, Panels (b) and (c) depict two examples of regime 3
behavior (global interactions, high path-dependency). Since the performance
of the economy typically increases with the magnitude of opportunities, ADF
tests acceptance frequency is constantly around 100%, for any € > 0, when A
and 7 are high, while it attains a 100% steady state only for larger €’s when
opportunities are small. The same argument also holds for regime 2 (see Panel
(a)): patterns of self-sustaining growth typically appear when e is large as soon
as path-dependency gets larger. Finally, Regime 4 still implies an ‘interior
solution’ for the exploitation-exploration trade-off (Panel (d)). In all those cases
whereby the economy is characterized either by global interactions and low path-
dependency or by no information diffusion and high opportunities, the system
is able to generate self-sustaining patterns of growth only if a suitable balance
between R&D and production is achieved.

5.3 Volatility of Growth Rates Time - Series and Self -
Organization

Let us turn now the attention to MC samples of growth rates time-series (GRTS):

S (@) = {1 (@) = [(Qun,t (@) = Qunyt—1 (@) /@1 (W)], t=1,..., T},

m=1,... , M and explore their aggregate properties.

An interesting issue to address - motivated by the foregoing evidence on
AGRs variability across independent MC simulations, see Section 5.1 - con-
cerns the behavior of the within-sample volatility of GRTS, e.g. their standard
deviation S(k,,(w)) = o(h,,(w)). In particular, we will firstly discuss whether
self-sustaining growth always imply a larger volatility in GRTS, by studying how
o(h,,(w)) depends on opportunities, path-dependency and information diffusion
for a given sample size T. Second, we will study the average within-simulation
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behavior of o(h,,(w)), to understand what happens to the volatility of GRTS
across successive phases of development.

To begin with, let us consider Figure 24, where sample means of MC distri-
butions of the GRTS standard deviations are plotted against the main sources
of growth. Unlike the behavior exhibited by the variability of AGRs across
MC observations, the correlation between magnitudes of GRTS volatility and
average growth rates attained by the system is not always positive.

As one could have expected, when ) is low, more volatile GRTS are gen-
erally implied by more global interactions (and, to a smaller extent, by higher
path-dependency). In such a case, the economy is likely to go through punc-
tuated output upsurges caused by the arrival of ‘new’ paradigms whose higher
productivity is (possibly) further boosted by knowledge accumulation. Thanks
to the effectiveness of information diffusion, agents almost instantaneously de-
cide to adopt the new knowledge bases. This will in turn trigger prolonged
periods of negative (but low in absolute value) growth rates, because of the
time-consuming nature of the adjustment process followed after imitation.

Conversely, when radical innovations are very likely, the relation between rel-
evant parameters and average o(h,, (w)) undergoes a dramatic change. In fact,
setups typically yielding self-sustaining growth (small p’s, large ¢’s) are char-
acterized by lower magnitudes of average volatility, whereas economies usually
generating stationary GNP time-series or very mild growth display an higher
GRTS variation.

As opportunities become larger, the amount of path-dependency increasingly
influences GRTS variability - cf. Figure 25. On the one hand, larger ¢’s do
not affect at all GRTS standard deviations when interactions are global, as
knowledge accumulation is efficiently driven by information diffusion. On the
other hand, as one keeps decreasing the rate at which information is spread
around, path-dependency gradually becomes the main force allowing for a self-
enforcing process of accumulation of existing competencies. The large amount
of additional knowledge coming from extraordinary discoveries is then expected
to be carried on to the next innovations (at a rate measured by ¢). As a
consequence, the economy is likely to be characterized by periods of near-zero
growth rates (exploitation periods) intertwined by recurring huge jumps caused
by the introduction of radical innovations, i.e. by a very large GRTS volatility.

To sum up, in all possible setups eventually yielding self-sustaining growth,
the economy displays an unexpectedly low average GRTS variability, in particu-
lar when opportunities are very high. Furthermore, the GRTS sample volatility
coming from GNP time series characterized by exponential growth is at least
of the same magnitude of - but more often lower than - that generated by
stationary output realizations (i.e. no or mild growth).

Even more unexpectedly, self-sustaining growth economies appear to attain
persistently higher output growth rates through a self-organizing process char-
acterized by GRTS volatility decreasing in time. To illustrate this property,
we have considered four prototypal environments yielding®: (a) stationary
GNP time-series; (b) levels of GNP evolving around a S-shaped trend; (c)
self-sustaining growth emerging from a low opportunities setup; and (d) self-
sustaining growth emerging from a high opportunities one. In each environment,

18 The following qualitative growth patterns arise robustly across M = 10000 independent
MC simulations, see Table 2.
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we have computed MC means of the distributions of recursive sum of squares and
recursive standard deviation of GRTS, as well as of standard deviation of GRTS
over disjoint samples, cf. Figure 26. As one takes into account the time evo-
lution of GRTS volatility of enlarging econometric samples {7y, 7o+ 1,... , T},
for T = Ty +20,To+21, ... ,T and Ty = 50, a striking pattern arises. Recursive

sum of squares of GRTS deviations usually increases as Tﬁ, with 8 > 0. How-
ever, 1 < 8 < 2 in the stationary GNP cases, so that recursive sum of squares

tend to explode, while recursive standard deviation grows as 77 Conversely,
as soon as some evidence of persistent economic growth emerges in the system,
B becomes less than unity - see Panels (a) and (b) - and recursive standard
deviations turn out to be monotonically decreasing and converge toward some
positive constant. In general, a negative correlation appears between § and the
overall performance of the economy: the more one fuels the system with oppor-
tunities and path-dependency, the higher the rate at which GRTS volatility, as
measured by average recursive standard deviation, decreases in time. The same
kind of regularity arises when one plots MC means of GRTS standard deviation
computed over disjoint subsamples [Ty, T + k& — 1], for some fixed k, against
To=1,k+1,2k+1,... (see Panel (c), Figure 26).

Hence, the model is able to account for the appearance, over finite time
periods, of distinct patterns (or ‘phases’) of development. Exponential growth
emerges as the outcome of a self-organization process leading to ‘ordered” GNP
time-series characterized by fairly moderate variability both across indepen-
dent histories and, more importantly, within time realizations. By means of an
imperfect adjustment process to unpredictable structural changes endogenously
introduced in the system, our boundedly rational agents are able to reach nearly
efficient aggregate states. This ‘Schumpeterian’ coordination is mainly achieved
through networks of direct and (partly) local interactions which establish when-
ever new knowledge bases appear in the economy. The fact that interaction
structures can change in time allows the system to eventually unlock itself from
conceivable inefficient states in which the economy could be trapped if agents
should always master a fixed set of technologies and interact with the same
‘relevant others’. As a result, under structural conditions above certain thresh-
olds, the economy manages to self-organize by conveying initial phases of tur-
bulence into an aggregate dynamics in which phases of almost steady positive
growth rates are punctuated by temporary slowdowns characterized by small
volatility.

6 Statistical Properties of Simulated GNP Time-
Series

In the foregoing Sections we have attempted to shed light on the mechanisms
allowing for the emergence of persistent growth in the model. However, an
interesting question still to be answered concerns the actual ability of the model
to generate time-series displaying statistical properties similar to those exhibited
by the empirically observed ones.

In this section, we will address this ‘exercise in plausibility’ by trying to single
out some statistically measurable features detected in the actual ‘business cycle’
(e.g. the magnitudes of the auto-correlations of output growth, the persistence
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of oscillations, etc.) which robustly arise also in simulated data. In principle, two
related lines of analyses might be pursued. First, as in Section 5, one could try
to roughly map regions of the parameter space into different statistical regimes
of ‘business cycle’ statistics. Second - and somewhat similarly to what has been
done in the literature under the heading ‘calibration of Real Business Cycle’
models (see e.g. Cogley and Nason (1995)) - one might attempt to distinguish
regions of the parameter space (if any) which are capable to generate simulated
GNP time series whose features exhibit statistically insignificant differences with
those computed on the empirically observed ones.

An initial caveat about the extent to which these kinds of analyses can be
informative is however required. Despite a huge empirical literature aiming
at uncovering ‘stylized facts’ in the business cycle, a very little consensus has
emerged through the last years about the actual properties of aggregate out-
put. Many debates still remain open, mainly because the statistical procedures
routinely employed have low power in presence of the generalized lack of large
spans of data!?. Years after the seminal work of Nelson and Plosser (1982), for
instance, the question of whether empirical log(GNP) time-series are trend- or
difference-stationary is still unresolved®’. Furthermore, as long as linear univari-
ate time-series analysis is concerned, there seems to be no conclusive indication
about the best parametric (ARIMA) specification fitting, e.g., U.S. de-trended
real log(GNP) series®'. In general, the only clear suggestion coming from the
empirical literature is that of pursuing case-by-case analyses, possibly employing
a multivariate approach®?.

Because of all that, we have chosen not to push further univariate parametric
studies - either focusing on the issue trend- versus difference-stationarity or
uncovering preferred univariate ARIMA models for MC samples {g_(w), m =1,

..., M}?*. On the contrary, we will employ here non-parametric analyses to

19Cf. among others Blanchard and Fischer (1989) and Romer (1996).

50Tt is a well-known result that standard ADF tests for ’stochastic non-stationarity’ suffer
from very low power against nearby ’trend-stationary’ alternatives. Many authors have indeed
proven that they are inherently incapable to discriminate between the null and the alternative
hypotheses on the basis of a finite sample of observations (see e.g. Bloug (1992), Christiano
and Eichenbaum (1989) and Rudebusch (1993)). Conversely, many other contributions have
recently appeared suggesting that unit-root tests can be nonetheless informative, at least over
long spans (DeJong and Whiteman (1991, 1994)). In this connection, Cochrane (1988) has
pointed out that the use of longer GNP samples (as in our case) may produce sharper unit-root
inference. Yet, evidence stemming from this strand of literature seems to conclude that U.S.
aggregate output is not likely to be difference stationary (Diebold and Senhadji (1996)). Notice
also that the distinction between trend- and difference-stationarity is potentially important
only in economic forecasting, but might not be so critical in many other contexts.

51See, among others, the contrasting findings stemming from Watson (1986), Campbell
and Mankiw (1987), Clark (1987), Stock and Watson (1988), Gagnon (1988), Blanchard and
Fischer (1989).

52Cf. Blanchard and Quah (1989) and Cochrane (1994). Unfortunately, the endogeneity of
all variables generated in the model prevents us from any meaningful multivariate analysis.

53 As we have already pointed out in Section 5.2, the simulated log(GNP) time-series gm (w)
turn out to be difference stationary almost always above well-defined threshold in the pa-
rameter space. Despite all the drawbacks of ADF tests, this result seems to match those
obtained earlier for U.S. GNP by Nelson and Plosser (1982) and Stock and Watson (1986).
For opposite findings, cf. Diebold and Senhadji (1996). As to preferred univariate mod-
els for Agm(w), preliminary analyses generally display results similar to those in Campbell
and Mankiw (1987). Given the well-know drawbacks of selection procedures based on both
Akaike and Schwartz criteria, we have simply selected the ARMA(p, ) specification which
most frequently get the maximum likelihood given p 4+ ¢ (over M = 50 Montecarlo replica-
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investigate some important features concerning the autocorrelation structure of
output growth rates and the persistence properties of the ‘business cycle’.

One of the few unquestioned ‘stylized facts’ of U.S. quarterly GNP growth -
also observed in other Countries, with some notable exceptions: see Campbell
and Mankiw (1989) - is that it is positively autocorrelated over short horizons,
while the autocorrelation function (ACF) over higher lags is not significantly
different from zero. In particular, the first GNP growth ACF coefficient appears
to be large and positive for U.S., Canada, Italy and, to a less extent, Japan.

Figure 27 shows the MC means (over M = 1000 replications) of the ACF of
GNP growth in some paradigmatic parameter regions yielding I(1) patterns of
log(GNP) time-series. Clearly, the model is perfectly able to robustly replicate
the above statistical property, in particular when interactions are global and
opportunities are large enough. In all these cases, the positive shocks to output
growth rates coming from innovations are almost instantaneously spread in the
economy, leading to high and positive first- and second-order autocorrelation
coefficients, followed by insignificant values over longer horizons. Conversely,
when interactions are local and opportunities are low, GNP growth does not
display ACF coefficients significantly different from zero (as they almost always
fall inside the 5% Bartlett confidence bands). Notice also that the associated
estimates for the spectral densities®®, albeit much smoother than the empirical
ones, usually display a peak around low frequencies and then tend to decrease
as the length of the period becomes small, cf. Figure 28.

To get a quantitative measure of whether the model is really able to replicate
empirically observed autocorrelation functions (ACF) for output growth, we
have also computed generalized Q-statistics defined as:

Qacs = (£ —E(w))[V(w)] 7 (z — T(w))

where r is the k-vector containing the empirically observed ACF; 7(w) is the
k-vector containing the MC means (computed over M = 1000 independent simu-
lations) of the estimated ACF generated by the model under the parametrization
w e Q, ie.:

S

m=1

and V(w) is the k x k MC covariance matrix:

V(w) = % Y (@) = Tw)) (£ (@) — E())’

Generalized Q-statistics are approximately x2(k) distributed. Table 3 shows

tions). Telegraphically, Agm (w) appear to be ARMA(1,0) or ARMA(O0, 2) when interactions
are local and path-dependency is low, while seem to be better described by ARMA(3,0) or
ARMA(2,2) when interactions are global and path-dependency is high.

948Spectral densities have been estimated by smoothing the periodogram using a Bartlett
window of k = 100 and plotted in the frequency domain [0,3.14..], scaled to match the unit
interval.
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some results obtained for k = 50°7. The model appears to generate very similar
autocorrelation structures for U.S. and Italy in both global and local interac-
tion setups. Moreover, because ACFs for some European countries present very
different patterns, with negative low-lags coefficients (e.g. France, UK., Ger-
many), one is not able to reject the null of insignificant differences between
empirical and simulated ACF also in the local interaction case.

Another prominent debate in the study of business cycle, strongly related
to the analysis of the structure of ACF output growth, concerns the issue of
whether GNP fluctuations are characterized by a permanent component and, if
s0, how big such a component might be. Indeed, if output levels were stationary
around an exogenous trend, any shocks to GNP would eventually die out and
long-term forecast will be unaffected. On the contrary, if GNP levels could
be described by a random walk (or an even more persistent process), then the
series would continue to diverge from its previously forecast once an innovation
occurs.

Following Campbell and Mankiw (1987, 1989) and Cochrane (1988), we
have considered two non-parametric measures of persistence of GNP fluctuations
based on sample estimates of auto-correlations of output growth (cf. Appendix
4 for details).

As Table 4 clearly shows, both measures decreases as the window size k
grows, but generally stabilizes around values exceeding unity in all the ex-
perimented parametrizations. This result, quite in tune with the findings of
Campbell and Mankiw (1989), implies that our simulated GNP time-series do
not appear to revert toward any smooth exogenous trend and exhibit very per-
sistent fluctuations: a 1% shock to output should indeed change the long-run
univariate forecast of GNP levels by far more than 1%. Also, persistence turns
out to be higher the more interactions are global, the larger the likelihood of
‘radical’ innovations and the smaller the density of islands in the economy.

Notice, however, that both estimated measures, albeit non-parametric, do
display significant drawbacks. First, as noticed above, they strongly depend on
the availability of long spans of data, so that Campbell and Mankiw’s empirical
results could not be so informative. Moreover, standard errors of the estimated
VE are usually very large (cf. Table 4 and Appendix 4). This implies that is
often very hard to distinguish if an estimated measure greater than unity really
comes from a non-stationary high-persistent process. However, as standard
errors are increasing with the window size k, one is more likely to get a low V*
from an highly persistence process than a large V* from a less persistent one.

7 Some Extensions of the Basic Model

In the present Section, we will show how the model can be naturally extended
to deal with some issues of interest in formal growth literature. First, the as-
sumption of a constant population size will be relaxed so as to study whether
‘scale effects’ arise in the model. Second, we will introduce some alternative
specifications of the exploration pay-off structure in order to reconsider the
sources of the exploration-exploitation trade-off. Finally, we will illustrate the

55 OQur results are not dramatically affected by this choice. International data are homoge-
neous to those in Campbell and Mankiw (1989) and refer to quarterly output growth from
1960:1 to 1990:4 (Source: International Monetary Fund).
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potential conflicts between individual behaviors and collective economic perfor-
mance, arising in the model because of the introduction of heterogeneity, either
in agents ‘willingness to explore’ or in the very structure of agents’ behavioral
rules.

7.1 Size of the Economy and Scale Effects

A well-known drawback of many models of endogenous growth based on some
forms of increasing returns - involving dependence of a flow variable upon a stock
variable, e.g. arrivals of technological ‘blueprints’ as a function of their levels - is
that sheer scale effects influence output growth rates®®. For instance, many one-
factor models, such as Romer (1986), predict that growth rates are increasing,
other things being equal, in the size of the population. Furthermore, when
one considers extensions of these basic models - such as multi-factors models
(Aghion and Howitt (1992), Grossman and Helpman (1991a) and Romer (1990))
and with international trade (Grossman and Helpman (1991c)) - the standard
result is that growth rates are increasing in the factor used intensively in the
‘innovative’ activity (e.g. the stock of skilled labor).

The present model, notwithstanding increasing returns to learning, does not
display that unreasonable property’’. Figure 29 depicts the behavior of MC
means of AGRs as a function of the population size (N) and of the economet-
ric sample size (T'), in a parameterization setup usually yielding self-sustaining
growth. If any, weak evidence on falling AGRs the larger the size of the economy
for a given time-length emerges. Moreover, AGRs do not display any monotone
pattern when N and T both increase. The intuition behind this result is that,
while ceteris paribus larger economies face potentially higher returns to knowl-
edge exploitation, it is also true that they must cope, in probability, with higher
‘adjustment lags’ to new knowledge bases (as proxied in our model by the time
it takes to move a certain fraction of the IV agents to the notionally superior
islands). Hence, larger economies which are potentially able to fully exploit
increasing returns to any one knowledge base need also a relative longer time
to achieve persistently higher growth rates.

In order to offer a possible solution to the ‘scale effect’ problem common to
many ‘endogenous growth’ models, Jones (1995a) has developed an alternative
specification implying, in the steady state, a positive correlation between output
growth rate and population growth rate. This implication, which does not seem

56We refer here to R&D-based models of endogenous growth, such as e.g. Romer (1990)
and Grossman and Helpman (1991a,b). In these models, size-effects stem from three related
assumptions, namely (i) technology is non rival, so that increases in the scale of the economy
entail larger profits for all innovators; (ii) there are strong inter-temporal spillovers, i.e. each
innovator can improve existing technology at any time; and (iii) new technologies are substitute
for the old ones, so that returns to innovation are decreasing in the rate of innovation. All
this implies that steady state analysis has to be conducted in the zero population-growth case.
Conversely, in many models in which growth is endogenously generated by the accumulation
of human and physical rival capital, any increase in the scale of the economy has no impact
on growth rates (cf. Lucas (1988), Jones and Manuelli (1990) and Rebelo (1991)).

57TEven though empirical results seem to strongly reject that e.g. growth rate of per capita
GDP bears a significantly positive relation with the size of the working-age population at a
country level - ¢f. Jones (1995b), McGrattan and Schmitz (1998) and Barro and Sala-y-Martin
(1995) - some authors have argued that this is not so when higher levels of aggregation (e.g.
world population) or lower ones (i.e. regional economies) are considered, cf. Kremer (1993).
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to be rejected by empirical data®®, is also shared by our model when one assumes
that, instead of being constant, the population exogenously grows at a rate
n>0,ie.:

Nig1 = f(N) = [(1+1)Ne, t >0,

and that the ‘new born’ agents AN;11 = f(Ny) — Ny are randomly dis-
tributed across the L; currently known islands®”. Moreover, as Figure 30 clearly
shows, AGRs are linearly increasing with 7 in all relevant parametrizations, as
the model in Jones (1995a) implies as far as comparative statics exercises are
concerned.

7.2 The Structure of the Exploration - Exploitation Pay-
off: An Alternative Specification

Two key ingredients driving the emergence of self-sustaining growth in the econ-
omy are, first, the particular behavioral rule governing exploration (see Eqgs. 6
and 7) and, second, the assumption that technological search takes place over a
somewhat ‘flat’ stochastic payoff landscape (i.e. 7 constant across the lattice).
An immediate implication of the latter hypotheses is that, once a miner has
decided to start searching, the probability of finding an island in a finite num-
ber of time periods t* converges to 1 as t* — 00%’. Consequently the ‘expected’
returns from the activity of exploration should be - despite their extreme volatil-
ity - typically larger than those (certain) stemming from the exploitation of the
existing knowledge bases.

To support this conclusion, let us let us start by considering the payoff
landscape faced by the miner ¢ € I, working at time ¢t = t¢ on island jo =
(z0,yo0) if it decides to become an explorer. Given an initial (certain) output
of ¢; 4,, the payoffs of agent i are described by the realizations of the stochastic
process {Gi,}i2s, 41 5 Gi,e > 0, where Giv = Gi+(z0, 0, ito;w) and w € Q. In
general, the probability structure of such a process is a very complicated object.
Consequently, it might be convenient to analyze a setting in which information
diffusion is absent (i.e. let p = oc0). Notice that in this case, since agents
cannot imitate other technologies, the starting island jy will keep its population
(on average) constant. Hence, g;s, can be taken as a measure of returns to
exploitation and contrasted with some measure of returns from exploration®!.
Concerning the latter, let us define the expected return of agent ¢ at time t, as:

58 At least if the model is taken as relevant for the World economy, see McGrattan and
Schmitz (1998).

59 This implication holds a fortiori when the new AN¢41 units are distributed among the
currently colonized islands only, either randomly or with probabilities proportional to the
number of miners currently working on them.

60Indeed, disregarding the effect of information diffusion, the probability that an explorer
will find an island after (exactly) s periods of exploration is m(1 — 7)°~1, which sums to 1
over s =1,2,... .

617t is worth noting that in the following we are not addressing any individual-choice issues.
Agents are not supposed to hold the rational capabilities necessary to compare expected
streams of returns from different activities before taking their decisions. A simple setting in
which the aggregate consequences stemming from quasi rational vs. irrational decisions are
compared is presented in the Section 7.3.
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E¢, [Gi,d] = /Qf(ﬁi,t)dq =
0

:/Qf(ﬁi,téi,k,k:toJrl,--- dt=1) - flGik,k=to+1,...,t—1)dg=
0
(12)
=(1- W)tftrl/qpr {A(st = Gip)ydg = m(1—m)' 07 Ey, [s] =
0

=a(l—m)" O 1+ N)(do + ¢ qig,) = F(L+N)(do+ ¢ Gixo),

where A(s; = §;+) stands for the event ‘finding a new island at time ¢ with
a productivity coefficient s, = ¢; ', # = (1 — m)t "o~ = (1 — )¢ is the
probability of finding an island at time ¢ having left island jo at time tg, and
e+ 1 =1t —ty is the actual duration of exploration. Moreover, as the events
‘finding a new island a time ¢’ are mutually exclusive, the total expected return
from exploration Eq, [g;] reads’?:

oo

Ey (@] = B[ Y dGidl = (14N (do+ ¢ i) (13)
t=to+1

Notice that Ey,[d;¢] is not monotonically increasing in the opportunities
parameter 7. Indeed, expected returns at time ¢ are increasing in the probability
of finding an island only when the actual duration of exploration ¢ — tg is less
than its expected length 7 = 1/7. On the other hand, total expected returns
are independent on 7 as any explorer will eventually find a new island.

A straightforward comparison between total and time-t expected payoffs from
exploration and returns to exploitations yields:

Eq, [6i] > ¢ <:>{ Gito < TiTpd = ahe)do i (14N <1
oldi] Z Qi,to

always if (14+N)¢>1
(14a)

714 . .
i 2 e | B0 S I = b do i (14 g <1
’ ’ always if (1+ N7 >1

(14b)

Hence, irrespective of the density of islands in the economy, total expected
returns from exploration always overcome returns from exploitation whenever
path-dependency and/or the likelihood of radical innovations are large enough -
cf. Eq. (14a). As A > 1, this is true whenevery > £. Conversely, if (1+ )¢ < 1,

62Kgs. (12) and (13) hold because: (i) all random variables are stochastically independent;
and, (ii) Yk =1,2,...,Vt: Pr{@i,t4% > 0] ¢;,c > 0} =0.
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inequality Ey,[d;] > i, still holds if initial output is smaller than a multiple
c1(A, ) > 0 of dg. As expected, when ¢ and A are small enough, explorers
get better payoffs the greater the distance from the origin of the starting island
and the smaller initial output. Indeed, when path-dependency is weak, initial
output does not strongly affect learning by doing (¢ small). Also, the likelihood
of getting a higher productivity coefficient for a newly discovered island is larger
the greater the distance from the origin of the island the explorer has started
from. Finally, as 9¢1 /0A > 0 and Ocq/9¢ > 0, returns from exploration will be
larger the more likely are radical innovations and the stronger path-dependency.

When time-t expected returns from exploration are compared to initial out-
put - see Eq. (14b) - the duration of exploration e+ 1 = t —ty becomes a crucial
variable. Indeed the probability 7 of finding a new island at time ¢ (having left
island jo at time t¢) is decreasing in e. However, 7 is increasing in m when the
actual duration of exploration (e + 1) is smaller than the expected one (1/7).
Then, in addition to large values of ¢ and A, the inequality 7e(1 + A) > 1
is more likely to be satisfied the smaller e (for a given 7) and the more 7 is
sufficiently close to 1/(1 + e) (for a given e). Intuitively, the time-t net returns
from exploration are always positive when the likelihood of finding an island at
time t (i.e. m) is large enough and when the duration of exploration is close to
its expected value.

A straightforward consequence is that, when information diffusion is super-
imposed to the processes of exploitation, exploration and innovation, net returns
from exploration are likely to be, on average, always positive - both in the long
and in the short run - for a very large region of the parameter space. This is
primarily due to the ‘flatness’ assumptions made about the probability struc-
ture of the payoff landscape faced by the explorers. In particular, for all ¢,
the random output §; ¢, given ¢, = 0, k =to+1,...,t — 1, will be equal to
(14+W)(do +¢4i,1, +w) with probability 7 and 0 with probability 1 —. There-
fore, each explorer will on average face a constant (though path-dependent and
individual-specific) payoff, no matter how large is ¢ and how far it will be from
the island it started from.

An interesting question then arises, namely: Will the model still be able to
generate patterns of self-sustaining growth when explorers have to face harder
environments in which, e.g. opportunities are decreasing the more R&D is
pushed ahead ?

To address this issue, let us assume that the probability of finding an island
in the node (z,y) is decreasing with the distance d; between (z,y) and the
origin, i.e.:

m(x,y) =moexp{—0(z+y)}, m>0,0>0 (15)

This setup will generally reflect economies in which opportunities are de-
creasing in a globally shared measure of technologically distance computed with
respect to some evaluation of the initial technological endowment. Though
the actual payoff landscape faced by each explorer still is path-dependent and
individual-specific, we can think of it as it if were the result of random drawings
of ¢;+ superimposed on an exogenously declining surface 7(x,y). Notice that,
when 6 = 0, 7(z,y)=mq as before, while, as § grows, the probability of finding a

33



new island will drop faster and faster for explorers searching far from the origin
of the lattice.

Simulation exercises on this version of the model are presented in Figure 31.
For a parameter setup yielding exponential growth in the case § = 0, we have
initially investigated the effects of increasing the slope of the payoff landscape
on the overall performance of the economy. As Panel (a) shows, MC mean of
AGRs are declining as 6 grows, but larger AGRs can be sustained by larger
X's (and accordingly by larger ¢’s and smaller p’s) even when explorers face
very ‘steep’ environments. Moreover, the variation of GNP time series across
independent simulations tends to shrink as 6 increases, because the economy
gradually converges toward zero-output realizations.

Nevertheless, for small §’s, the economy is still able to generate self-sustaining
growth for meaningful parameter setups (see Panel (b)). As the slope of the
payoff landscape gradually becomes steeper, other interesting growth patterns
appear. When 6 is not too large, the economy experiences either temporary I(1)
patterns discontinued by periods of stagnation and recession or initial phases of
growth followed by cycles around a steady output thereafter. Finally, when it
becomes inherently hard to introduce innovations as research is pushed far from
the initial fundamentals, and interactions are local, GNP time-series progres-
sively display negative trends characterized by increasing volatility (see Panel
().

Similar results also arise when one assumes that the probability of finding an
island is individually decreasing with the duration of exploration. In particular,
assume that if explorer ¢ leaves island at time tg, then the probability of finding
an island at time ¢t will be: m;(t,tg) = mo 6 "% | mg > 0, 0 < 6 < 1. In this
specification, each explorer will face an individually-specific, locally decreasing
opportunity landscape, the probability of finding a new island becoming smaller
the longer the search is carried on. Notice that, even though we have chosen
not to introduce any explicit selection dynamics (i.e. a mechanism governing
the evolution of individual firms according to their revealed technological and
market success), this alternative specification of the exploration-exploitation
payoff structure would allow us to address selection issues in an indirect way.

7.3 Behavioral Heterogeneity, Individual Rationality and
Collective Outcomes

Heterogeneity may arise in the model (at least) at three levels. First, technolo-
gies might (and do) differ both by their ex-ante productivity coefficients s; and,
path-dependently, by their ez-post exploitation histories (i.e. the realizations
of the stochastic processes m;(t)). Second, agents might be characterized by
different propensities to explore (i.e. distinct €;, ¢ € I), given the decision rules
described in Section 3. Third, agents might even be endowed by heterogeneous
decision rules, e.g. some agents might hold ‘more’ rational strategies governing
the choices of imitation, technological search, etc. .

In this section, we will first relax the assumption of a homogeneous propen-
sity to commit to technological search and consider an economy in which an
initial distribution E = (€1, €2,... ,en), € € [0,1] and €; # €;; for some j # j
is given. To keep things simple, let us suppose that E is such that ¢; = 0,
i =1,2,...,|uN] and ¢, = €y, i = |[pN| +1,..., N, where g € [0,1] and
€0 € (0,1]. In other words, a share u of the population is completely unwilling
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to leave (i.e. the ‘sedentary’ agents), while the remaining share (1 — 1) behaves
as before.

As intuition suggests, the aggregate consequences of increasing p’s (in terms
of economy’s AGRs) are once again strictly related to the eventual solution
of the exploitation-exploration trade-off, arising in this case even more vividly.
When the share of potential explorers declines, the AGRs schedule goes indeed
through three distinct regimes, see Figure 32(a). If the sources of growth are very
weak, the only way to avoid decreasing output levels is to commit completely to
exploitation of existing resources. On the contrary, when they are very strong,
the economy’s performance is optimized at p* = 0 and AGRs decrease with p.
In all intermediate setups (e.g. global interactions and no path-dependency),
AGRs typically exhibit an interior maximum (cf. Section 5.1 and 5.2), with poor
performances when the economy commits either small or too many resources
in the exploration of unknown knowledge bases. Accordingly, when the size
of the set of ‘sedentary’ agents grows, output time-series are likely to exhibit
increasingly longer periods of steady GNP levels, cf. Figure 32(b). Hence, in
the limit, the system is going to mimic the closed-ended, no-exploration case
presented in Section 4.1, with an initial period of transitory growth followed by
zero growth-rates thereafter (cf. also Section 7.2).

A higher-level behavioral heterogeneity can be however conceived. Indeed,
given the extreme assumptions made on the rational bounds of the agents pop-
ulating our economy, the model appears to highlight a few sources of potential
conflict between individual and collective rationality. For instance, what would
it happen if the population of our naive entrepreneurs is injected by ‘more ra-
tional’ players, which behaves on the grounds of some (appropriately defined)
expectations ?

In order to illustrate this point, consider the following simple example. As-
sume an economy characterized by: (i) constant technological returns to scale
(i.e. @ =1); (ii) no knowledge diffusion (i.e. p = c0); (iii) no path-dependency
in innovation (i.e. ¢ = 0); (iv) all N agents working at time ¢t = 0 on a single
island (¢g = 1) with co-ordinates (z*,y*) and initial productivity s* = z* + y*;
(v) a constant positive transportation cost 8 > 0, which explorers have to pay
in each period of their search.

We will consider two different settings for what concerns behavioral assump-
tions, namely: (a) the population is composed of N agents behaving according
to the rules defined in Section 3; and: (b) a ‘representative individual’ (RI),
with unbounded computational skills and complete information, is introduced
in the population. In particular, assume that the RI knows: (i) the co-ordinates
(z*,y*); (ii) the system parameters; (iii) the model of the economy. Although
the RI is aware that, on average, the initial productivity of a new island is in-
creasing in its distance from the origin, he does not know where new islands
are actually located. Hence, starting from the node (z,y), it will make use of a
‘rational’ exploration rule which gives equal probability to the nodes (x + 1,y)
and (z,y + 1). Finally, assume for simplicity that the intertemporal discount
rate is zero%3.

At time ¢ = 1, the problem for the RI is to decide whether to continue to
extract the good at time ¢ = 2 or start to explore. In the first case, it will

630ur conjecture is that the following results will hold a fortiori for a strictly positive
discount rate.
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get a per-period net output from mining equal to @ = s*. In the second
case (see Section 7.2), the expected per-period net output from exploration will
be: Qr = [(1+ A\)(s* + 1) — B7]/7, where 7 = 1/7 is the expected length of
exploration (or, equivalently, the expected distance between (z*,y*) and a new
island). Then, the RI will decide to remain on island (z*,y*) if and only if

Qun > QF, ie. iff:

1 1 B « x
F<H—A—S—*+m—ﬂ'(ﬁ,)\,8) (16)
As one can easily check, 7*(8, A, s*) is increasing in 3, decreasing in A, and
increasing in s* if A > §—1 (i.e. if opportunities are large enough compared to
exploration costs). Notice that if s* — oo the RI will always stay on (z*,y*),
while if A — oo it will always leave.

Consider now, for given values of s*, the set of (8, \) satisfying (16) for some
7 € (0,1). In such a parameter region, the RI will decide to continue to work as
a ‘miner’ and get a constant output Qs = s*. On the contrary, any economy
characterized by the same (0, A, 7, s*) and composed of homogeneous agents
behaving as in setup (a) above (cf. Section 3), will face a rather ‘poor’ envi-
ronment, in which there is neither knowledge diffusion, nor path-dependency
in innovation, nor increasing returns to scale. Furthermore, let us assume that
our ‘naive’ agents are characterized by a very low ‘willingness to explore’ (i.e.
€ = 0.05). Notwithstanding all that, as Figure 33 shows, the economy is able to
get a per-capita net output persistently greater than Q.

Thus, even in this very simple setting, collective growth finds its necessary
condition in the presence of a number of ‘irrational’ individuals. Even more
so, the potential conflict between individual rationality and collective welfare
emerges in the general setting with unlimited notional opportunities of explo-
ration and transportation costs born up front by the ‘explorers’ themselves.

Note that, as mentioned earlier, this property significantly expands upon
the common result from e.g. New Growth literature that in presence of exter-
nalities or dynamic increasing returns a systematic divergence between endoge-
nously generated growth rates and socially optimal ones (whatever the latter
means...) is likely to emerge. Here, one may require indeed the presence of
straightforwardly érrational agents in order to have self-sustaining growth at
all.

8 Conclusions

The paper presents a simple model in which self-sustaining growth endogenously
emerges, under suitable technological and behavioral conditions, as the result
of imperfect coordination among stylized, boundedly-rational, heterogeneous,
firms which locally interact in an open-ended technological space and are able
to modify the set of their ‘nearest neighbors’.

Among other properties, the model shows that the very possibility of notion-
ally unlimited (albeit unpredictable) technological opportunities is a necessary
condition for patterns of persistently fluctuating exponential growth to be gen-
erated in the economy.
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In that circumstance, self-sustaining growth is attained whenever techno-
logical opportunities (as captured by both the density of ‘islands’ 7 and the
mean of Poisson jumps to radically new paradigms A), path-dependency (i.e.
the fraction of idiosyncratic knowledge, ¢, that agents are able to carry over
to newly discovered technologies) and globality of interactions in the informa-
tion diffusion process (—p), are beyond identifiable thresholds. In that region
of the parameter space, the system self-organizes through subsequent phases
of development and exhibits ordered GNP time-paths characterized by smaller
growth-rates volatility.

Furthermore, the overall performance of the economy appears to be mono-
tonically and linearly increasing in all sources of growth except the degree of
globality of interactions, which engenders a strong threshold effect in the av-
erage growth rates of the system. The trade-off between exploitation of the
fundamentals and exploration of the unknown - generated in the model by the
strong uncertainty of the relative returns from R&D and production activities
- clearly emerges, however, when one investigates how growth is affected by the
propensity to explore (€) - or equivalently by the share of sedentary agents in
the population (i) - and by the cumulativeness of learning («). In well-defined
technological regimes, indeed, the system generates self-sustaining patterns of
growth and higher overall performances only if a suitable balance between R&D
and production is achieved.

As mentioned, the model could be considered as a sort of ‘reduced form’ evo-
lutionary model, with an almost exclusive emphasis upon the learning/diffusion
aspects of economic evolution, while repressing the competition/selection fea-
tures of market interactions. Although the limitations stemming from this as-
sumption are quite obvious (for example, the ‘microeconomics’ is bound to be
rather poor), the model is nonetheless able to generate GNP time-series with
statistical properties which robustly replicate some of the few unquestioned styl-
ized facts of the ‘business cycle’ (e.g. GNP growth autocorrelation structure,
persistence of fluctuations, etc.)®* and, at the same time, to avoid drawbacks
shared by many models of endogenous growth such as scale-effects (see Sec-
tion 7.1). Moreover, self-organized patterns of exponential growth are not only
attained in the system without appealing to the forecasting powers of any far-
sighted ‘representative agent’, but, even stronger than that, the economy might
require non-average (and individually irrational) behaviors in order to achieve
such self-sustained growth paths®>.

As it stands, the model seems quite well suited to account for some generic
properties of knowledge-driven growth. Nevertheless, further developments come
easily to mind. First, one could try to see how the results presented here are
modified by the introduction of an additional ‘Keynesian’ coordination problem
affecting interdependent demand generation mechanisms. Second, one might
likewise study the relevance of adding explicit selection processes affecting the
frequency in the population (i.e. the size) of different agents which are ‘carriers’
of different technologies. Finally, once reasonable rules of interaction between
economies are suitably defined, one could also investigate some ‘convergence’

64Note also, that, in principle, the above variables and parameters can find empirical (al-
though inevitably rough) proxies. Therefore, one might not despair to test the qualitative
properties generated by the model against actual data.

65 A similar point on non-average behaviors inducing symmetry breaks in the distribution
of particular features or performances of a population of agents is in Allen (1988).
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issues by simultaneously simulate multi-layer systems characterized by different
initial conditions and system parameters.

However, even before all that come, it seems that the foregoing work might
contribute to the understanding of how endogenous learning processes, with im-
perfect collective adaptation and heterogeneous agents, drive growth notwith-
standing (or rather because of ) the absence of fantastically rational agents and
equilibria fulfilled throughout.
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Appendix 1
Al.1 System Variables of the Basic Model

Globality of Information Diffusion Process
Path-Dependency in Exploration-Discovery Processes
Mean of Poisson Random Variable W

Probability that a Node is an Island

Returns to scale parameter in production
Willingness to Explore

Initial Size of the Population

Econometric Sample Size

Monte Carlo Sample Size

S RN B S

Al1.2 Pseudo-Code of the Implemented Computer Program

Setting up Initial
Conditions

Repeat M times
Each m=1,...,M:
Store MC Statistics

. Repeat T times
. . . Eacht=1,...,T:
Main Iteration Store time-t variables

Begin Proc Initial Conditions;
Let time period t=0;

Begin Proc Generating Initial Islands

Define a square Z in L? with vertices (0,0) and (g, q);

Do Foreachx =1,...,qandy =1,... ,q;

Let each (x,y) € Z be an island with probability Pi;

Call m = number of islands in Z after the assignation;

Let island € {1,... ,m} index islands;

Let [z(island),y(island)] be the coordinates of island ‘island’;
End Proc Generating Initial Islands;

Begin Proc Assigning Productivity Coefficients;
Do For each island=1, ... ;m;
Let s(island) = s[z(island),y(island)] := z(island)+y(island);
End Proc Assigning Productivity Coefficients;

Begin Proc Def. Econ. Frontier (EF) and Curr. Realized Econ. (CRE);
Let zfrontier = {max x(island)}, island € {1,... ,m};
Let yfrontier = {max x(island)}, island € {1, ... ;m};
Define the CRE as the Box {(0,0),(zfrontier, yfrontier)};

End Proc Def. Econ. Frontier (EF) and Curr. Realized Econ. (CRE);
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Begin Proc Assigning Agents to Initial Islands;
Do for each agent i={1, ,N};
Assign at random island(i)€{1,... ,m};
Let status(i)=miner;
Let agent i coordinates be x(i)=x(island), y(i)=y(island);
Let [# of miners|=N, [#explorers|=0, [#imitators=0];
End Proc Assigning Agents to Initial Islands;

End Proc Initial Conditions;

Begin Proc Main Iteration;
Let t=t+1;
Do until t=T;

Begin Proc Updating #min., #expl., #imit., #min.(islands);
#miners = Sum over all i such that status(i)=miner;
#explorers = Sum over all i such that status(i)=explorer;
#imitators = Sum over all i such that status(i)=imitator;

Do for each island=1, ... ,m;
Compute #miners(island) = sum over all i={1,... N}
such that status(i)=miner and island(i)=island;

End Proc Updating #min., #expl., #imit., #min.(islands);

Begin Proc Computing output and Islands’ productivities;
Do for each agent i={1, ,N} such that status(i)=miner;
output(i) = s[island(i)]*[#miners(island(i))]~ (Alpha-1);
Do for each island=1, ... ,m;
output(island)=s(island)*[#miners(island)]~ (Alpha);
pr(island)= s(island)*[#miners(island)] "~ (Alpha-1);
GNP = Sum[Q(island)], island=1, ... ,m;
End Proc Computing output and Islands’ productivities;

Begin Proc Miners Behavior;
Do for each agent i={1, ,N} such that status(i)=miner;

Begin Proc Assigning Memory to Miners;
Memory(i)= Output(i);

End Proc Assigning Memory to Miners;

Begin Proc Miners -> Explorer change of status;
Do with probability Epsilon;

Let status(i)=explorer at t+1;
End Proc Miners -> Explorer change of status;

End Proc Miners Behavior;

Begin Proc Explorers Behavior;
Do for each agent i={1, ,N} such that status(i)=explorer;

Begin Proc Explorer Move;
Draw randomly one of the 4 adjacent nodes of x(i),y(i);
Check positiviteness of new coordinates;
Update accordingly x(i),y(i);

End Proc Explorer Move;

Begin Proc Checking whether explorer i is IN or out the CRE;
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If it is IN then GO to Proc Known Island Discovery;
If it is OUT then GO to Proc New Island Discovery;
End Proc Checking whether explorer i is IN or out the CRE;

Begin Proc Known Island Discovery;
If x(i)=x(island), some island 7* € {1,... ,m} then do;
Let Status(i)= miner at t+1;
Let Island(i)= j* at t+1;
Let x(i)= x(island j*), y(i)= y(island j*) at t+1;
Else GO to Proc Information Diffusion;
End Proc Known Island Discovery;

Begin Proc New Island Discovery;
Do with probability pi;
Let x(i),y(i) be an island,;
Let Island(i)= m+1 at t+1;
Let z(island m+1)= z(i);
Let y(island m+1)= y(i);
Let Status(i)= miner at t+1;

Begin Proc Set Productivity Coeff. New Island;
Draw W from a Poisson[Lambdal;
Draw U from a 0-mean Rectangular Distr;
Define Dist(i)=x(1)+y(i);
Define PD(i) = Phi * Memory(i);
Let s(m+1)= (1+W)*[Dist(i)+ PD(i) + UJ;
End Proc Set Productivity Coeff. New Island;

Begin Proc Updating EF and CRE;
Let zfrontier = {max x(island)}, island € {1,... ;m};
Let yfrontier = {max z(island)}, island € {1,... ,m};
Update the CRE Box {(0,0),(zfrontier, yfrontier)};
End Proc Updating EF and CRE;

Enlarge the set of currently known islands m=m+1;
End Proc New Island Discovery;

End Proc Explorers Behavior;

Begin Proc Imitators Behavior;
Do for each agent i={1, ,N} such that status(i)=imitator;
Call imitated(i) = index of island imitated by i;
Let dist(i, imitated(i))= dist(i, imitated(i)) - 1;
If dist(i, imitated(i))= 0 [i has reached the imitated island j*] then do;
Let Status(i)= miner at t+1;
Let Island(i)= j* at t+1;
Let z(i)=x(5") at t+1;
Let y(i)=y(5*) at t+1;
End Proc Imitators Behavior;

Begin Proc Information Diffusion;

Begin Proc Signals Reception;
Do for each agent i={1,... ,N} such that status(i)€ {miner, explorer};
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Do for each island ={1,... ,m} such that

#miners(island)<>0 and island <> island(i);
D(i;j)=Abs[z(i)-z(island j)]+Abs[y(i)-y(island j)];
Let agent i receive a signal from island j with probability:
int = [#miners(island) /#miners]*exp{-Rho* D(i;j) };
Compute the number si(i) of signals received by i;
Store the subset of indexes S(i)C{1,... ,m}, |S(i)|=si(i)

of islands which i has received a signal from;
Store the current pr(island), island € S(i);
End Proc Signals Reception;

Begin Proc Signals Choice;
Do for each agent i={1,... ,N} such that
status(i) € {miner, explorer} and si(i)>0;
Let kq (i) the [si(i)+1]-vector whose first si(i) entries are
the elements of S(i) and whose [si(i)+1]-th entry is island(i);
Let ko (i) the [si(i)+1]-vector whose h-th entry is pr(island),
island € S(i), h <si(i), and whose [si(i)+1]-th entry is pr[island(i)];
Extract an index from kj (i) with probabilities proportional
to the entries of ko (i) and call it imitated(i);
If imitated(i) <> island(i) then do;
Let Status(i) = imitator at t-+1;
Let dist(i, imitated(i)) = Abs[z(i)-z(imitated(i))] +
+ Abs[y(i)-y(imitated(i))];
Let imitated island = imitated(i);
If imitated(i) = island(i) then go to next i;
End Proc Signals Choice;

End Proc Information Diffusion,;

Store all relevant time t variables;
End Proc Main Iteration;
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A2.1

Appendix 2

Proof of Proposition in Section 4.1

Consider the stochastic process M, = {(Mu¢, M2:), t =1,2,...}, where My,

is the r.v.

“number of agents ‘mining’ on island j at time ¢”, j € {1,2}. Since

it must hold that the total number of miners at the beginning of t = 0 is N (i.e.
Mg + Myg = N), we can assume as initial conditions some distribution Py on
Mo with state space {0, ... , N} and let P(M,) = P(Myo, N—Mi0) = Po(Mio).
The process M; completely describes the economy, as the current number of
imitators will simply be E; = N — (Mi¢ + May).

1. Define Lj;, j = 1,2 and ¢t > 0, as the random variables: “number of
miners working on island j at (the beginning of) time ¢ who choose to
imitate island j/ € {1,2}, j7 # j 7. Given stochastic independence in the
two-stage procedure described in Section 3.5 - cf. in particular Eq. (10) -
then it is straightforward to see that:

(a)

The probability distribution of L, ; conditional on M; = (mq ¢, ma )
is a binomial (n,p) with parameters n = m,; and:

P=DPjt=
My 1 S5 M5 e
= e L= (A21)
My + My 85 Mie + 850 MGy
. a+1
_ S5 Myt e—p(s—1)

. . . o3 . (e%
(Mt + Mo t) (3J m3, + s mg

where (mj; +my ) and s; m§, + sj» m$, , are, respectively, the to-
tal number of miners and total GNP at time ¢; p;; is simply the
probability that a miner working at (the end of) time ¢ on island j
will decide to imitate island j/°C.

The random variables L;-|M . and Lj-,|M,, are stochastically inde-

pendent for any 7 # 7/, all (j,j/) € {1,2}?, and so are L;;|M; and
Lin| M, for j € {1,2} and jr € {1,2}, jr # j.

The relation between M, and Li—r = (L1 4—r,Los—7), 1 < 7 < t,
reads:

A]V[j,t = ]V[j,t — ]V[j,t,1 = —Lj,tfl, t= ]., ey S — 1

(A2.2)
AM;jy = Mjs — Mj—1 = Ljig—s — Lju—1, t>s

66 Notice that in Eq. (A2.1) we have supposed that, once having received a signal, agents
choose islands to imitate with probabilities proportional to Q¢(z;,y;) and not to their pro-
ductivities as assumed in Section 3.5. This scaling operation has been performed to deal with
values of o € [0,00] instead of @ € [1,00] and does not affect the results presented here.
Moreover, in order to avoid a 09 expression for P(Lj+ = Olm1,¢,m2,¢) when mj s = N (and
then pj, ¢ = 0), we have also assumed that P(L;j ¢ = 0/m;; = N, mj,; =0) = 1.
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Indeed, imitators take s periods before they start producing on the
chosen island. Then, in the first s — 1 periods, the number of miners
working on island j at time ¢ will be simply equal to M;s—1 — Lj ;1.
When t > s, however, imitators who left j/ at time ¢t — s have reached
j. So ]V[j,t = (]V[j,t,1 — Lj,tfl) + Lj/,tfs~

Equations (A2.2) imply that M; is a Markov process, as the conditional
distribution will obey:

(MM, ), 1<t<s-—1

P
PM|M,_p, h=1,2,...,1) = { P(M, M, M, ), t=>s

(A2.3)
while, at any time ¢ > 1, the joint distribution will be given by:
t—s
P(My, My, Mo) = [[[ PO My oy, My )] -
h=0
(A2.4)
s—1
([T PQL WM, 1) ] P(M)
h=1

Moreover, the events: “a miner ¢ working on j at time ¢ decides to imitate
island j7 € {1,2}, j/ # j 7 are stochastically independent, for t > s, given
(M, ,M, ,)and, for1 <t<s—1, given M; 1. Then:

P(M,|M,_y) = P(Mg|M,_y)  P(Mau|M,_y), 1<t<s-—1
(A2.5)
P(Mt‘Mtflvﬂtfs) =
= P(]le,t|Mt71’Mtfs) : P<]V[2,t|Mt71’Mtfs)v t>s

To complete the proof of point (1) it must be shown that the initial condi-
tion Myg+ Moo = N ensures that M; = My, + Moy < N, all t > 1. To see
this, consider Egs. (A2.2) and let (Mig, Mag) = (m19, N — mag). Then,
by recursion, one gets:

t—1
N - Lin 1<t<s—1
h=0 j=1,2
M; =
s—2 s—2
Ms 1+ > > Lint Lit n1 t>s
h=0 j=1,2 h=0 j=1,2

Hence, when 1 <t <s—-1, N > Mj; > Mj;—1, j = 1,2 and My < N.
Moreover, when t > s:

s—2
My < Msy+ ) Y Lin=Msy + N = Myy = N.
h=0 j=1,2
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Before proving point (2), let us compute the distributions of (M; /M, 4) ,
1<t<s—1,and of (MM, {,M, ,),t>s. Let M;_1 = (ma—1,M2:_1)
and M;_s = (mit—s,ma4—s). Then, by Egs. (A2.2), for any m= {(mq,m2)
:0<my < N,0<my <N, mg+mg <N}, and for j € {1,2}, jr € {1,2},
i1 # i

P(Mj=mj|M, 1) = P(Lji—1 = mj—1 —m;|M,_;), I1<t<s-—1
(A2.6)
P(Mj=m;|M, M, )=
= P<Hj,j/(t —1,t— S) =m; — mj,tfl‘Mt—UMt—s)’ t>s
where H; j,(t—1,t—s) = Lj; 4+—s— L;j +—1 is a random variable which, conditional
on some feasible M; 1 = (mq—1,m2—1) and My_s = (M1 4—s, M2 4—5), has

support {—mys—1,...,—1,0,+1,... ,mj +_s} and is (conditionally) distributed
as a difference between a BIN (mj, 1—s, pji—s) and a BIN (m;1—1,pjr1—1). Hence:

Prob{M;, =k | M,_; = (m14—1,mo4—1), M,_, = (M1—s,M2s_s)} =

= (1 =pje—s)™"" (1 = pjre—1)™ " - (A2.7)
h k+h
.Z(mj,t1> (mj/,ts> < Pjnt—1 > < Pjt—s )
. h k+h 1 —pjni—1 1 —pji—s
where the sum is taken over h = {max{0,—k},... ,min{m;,_1,m; —s — k}}

and p;’s are as in (A2.1).

2. When no ‘best practice’ is present in the economy, Eqgs. (A2.2) and (A2.5)
boil down to:

AMjy = Mjy — Mj1=Ljji—1 — Lj

(A2.8)
P(Mt‘Mt—UMt—s) = P(Ml,t‘Mt—l)' P(MQ,t|Mt—1)

for allt > 1. As My + Moy = N, any t > 1, the behavior of the system
for all ¢ > 0 is described by the scalar r.v. M; = My;. For a given initial
distribution P(Mj), the stochastic process {M;,t > 1} is a stationary
Markov chain with discrete state space {0,1,... ,N — 1, N}, as (A2.8)
implies that P(M;) = P(M;_1)- P(M|M;_1),t > 1. By (A2.6), we know
that: p(m/|m) = P(My = m/|M;_1 =m) = P(Hy2(t —1) = m/ —m); and
that Hiys(t — 1) - conditionally on M;_; = m - is the difference between a
BIN(N —m,p;) and a BIN(m,pa), where:

ma+1 (N o m)a+1
(plva) - a a)’ @ @
N-(m*+ (N —-m)*)" N-(m®+ (N —m)%)
Hence p(m/|m) = 1if and only if (m/, m) € {(0,0), (N, N)}, while p(m/|m) =
0 if and only if m € {0, N} and m/ € {1,...,N —1}. After a standard
row/column permutation, the (N + 1) x (N + 1) transition matrix P gets

the form:
pP— ( Ioxo 025 (N-1) >

Riv_1)x2 Quv-1)x(v—1)
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where the m-th row of R is r,, = [p(0/m),p(N|m)] = [pY ™, pi], m €
{1,...,N—1}, and the generic (m, m/)-entry of Q, for (m,m/) € {1,... ,N—
1} x {1,... ,N — 1}, is given by (see A2.7):

p(mim) = (1 —p))N="(1 = pa)™ -

min{m,N—m'} m
W

h=max{0,m—m'}

N —m Do h 1 m' —m~+h
m' —m-+h 1—po 1—p

Hence the Markov chain M, is not irreducible (because P is not regular)
and the process displays two absorbing states Xz = {m4+,m_} = {0, N}.
The latter are the only recurrent states while Xr = {1,... , N — 1}
are all transient. This implies that the process will be absorbed almost
surely. Finally, consider the (N — 1) x 2 matrix B whose generic row is
[bo(m),bn(m)], m € {1,... , N — 1} and by, (m) is the probability of be-
ing absorbed by the recurrent state m* € {0, N} starting at time 0 from
m. Then, standard results - cf. Kemeny and Snell (1960) - allows us to
conclude that: B = (I - Q)"'R.

. When s > 1, M, is no longer a stationary Markov process, as transition
probabilities for 1 <t < s — 1 differ from those for ¢ > s. In particular,
given My_1 = (mq4—1,ma—1) and M,_s = (mq 4—s,M2—s), then if 1 <

t<s—1(A2.9):

d
AMl,t‘Mt_1~ - BIN(m1,t—1,

d
A-Z\Z[Q,‘t‘Mtfl~ - B]N(mg,t,l,

while, for t > s (A2.10):

d
AMl:t‘Mt—l7Mt—SNBIN(mQyt_S’

_BIN(ml,t—la

d
AMzy[My_y, M,_"BIN(ma—s,

~BIN(ma,_1,

(mig1+moe 1) (m§, | +sms, )

at+l —p(s—1
mys 1€ (==1)

(ma,e—1 +mae—1) (m(lx,t—l + Sm%,t—l)

a+l _—p(s—1
m{ile p(s—1)

+
(ml,t—s + m?,t—s) (mitfs + Smg,tfs) )

a+l —p(s—1
smy e (s—1)

(mae—1+mag 1) (me, | +smg, )

a+l —p(s—1
smyy_ e (s—1)

)+

(M1 +moe ) (MG, o +smg, )

at+l —p(s—1
My 1€ (==1)

)
(mye—1+mae 1) (Mg, 4 +sms, )
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where ‘ stands for ‘is distributed as’. To show that M, will almost surely
be absorbed by the states my = (0, N) and m_ = (V,0), let us start to
note that, as My ;+Ms; < N forallt > 1, thenif M; ;_; = N (or symmet-
rically M s = N) for some t —s > 0, then Mz ;s = 0 (or symmetrically
M —s = 0). Second, Egs. (A2.2) imply that (i) P(AM,+ <0|M,_;) =1,
j=1,2when1 <t <s—1;and (ii) if j7 € {1,2}, j/ # j, then for j=1,2
and 1 <t<s—1:

Mje = Mjo—[Ljo+ ...+ Lju-1],
while for 7 =1,2and t > s:

Mj,t = ]V[jj() — [Ljy() + Lj,l + ...+ Lj,t—l] + [Lj/j() + Lj,l + ...+ Lj/,t—s]'

Hence, if t > 2s — 1:

Miy = Mig—s—[Lig—s+Log—s] —[L1t—1+ ...+ L1t—sp1] +
+[Lot—s—1+ ...+ Lot_2s+1]
(A2.11)
Myy = Mg —[Lig—s+ Lot—s] —[Log—1+ ...+ Lot—st1] +

+[L1,t—s—1 +...+ Ll,t—?s—{-l}

Consequently, if for some ¢, My ;s = N (and so My ;s =0),then L;; =0
fort=t—2s+1,... ,t—1and 7 =1,2. This shows that, also in the case
s > 1, the states m4 = (0, N) and m_ = (N, 0) are absorbing. In fact, by
(A2.11), if t is sufficiently large, then for all 7 > 1 (A2.12):

PTOb{(]le,t—s+Ta ]\/-{2,75—5-1-7') = (Na 0)|(]V-[1,t—sa MQ,t—s) = (N7 0)} =1

PTOb{(Ml,tfs+‘ra M2,tfs+‘r) = (07 N)‘(Ml,tfsa M2,tfs) = (01 N)} =1

Intuitively, if all miners have to be working on island 1 at time ¢ — s,
then nobody could leave any islands during the s time periods before t — s
and during the s time period after ¢ — s. All other states are transient,
as one can easily see by directly computing probabilities in (A2.7), for
every 4-tuple (mi¢—1, Mo 1,M1,1—s,m2yss) € {0,1,..., N}* such that
mi—1+mai—1 < Nand my_s +mas < N.

A2.2 The Average Behavior of the Economy
Equations (A2.6) and (A2.7) jointly imply that, for any j € {1,2} and
gre {12}, jr # j:

E(MjM, 1) = mjt1—mjs—1pje—1, 1 <t<s—1
(A2.13)
E(Mje| M, M, ) = mji—1+Mjri—sPji—s — Mj—1Pjrt—1, t > 8
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Let us then define the (conditional) expected share of worker on island j
as xj; = m;/N, j € {1,2}. Assume also that N is large enough, so that
xj+ € Z[0,1]. Substituting (A2.1) into (A2.13) yields, for 1 <t < s —1:

a+1
ST1,t—1Tg ¢

{ T1,t } _ [ T1,t-1 } _o—p(s=1) | (@reten—) (@, ey, )

+1
T2t X2 t—1 TL T2,
(@1,0-1+@2,0-1)(xF ,_+525,_4)
(A2.14a)
and, for t > s:
T1,t _ T1,t—1 +
T2t T2 t—1
(A2.14b)
z‘l"fismg,t,_‘; Sm],tqmgfil
tePls—1) (wl,t—s+m2,t—s)(mi‘,1715'*‘5903,175) (ml,t—l+m2,t—11)(9”1‘,[71+59”3,[71)
ST 1—sTh _ m?j,]arz,zq
(@1,0—s+m2,0-6) (2], _y+s28 ) (w1—1+@2,0—1)(2f,_+sz8, )

Given some fixed initial conditions z¢g = z19 € Z[0,1] - and x99 = 1 — 219
- the system of non-linear difference equations (A2.14) describes, for all t > 0,
the behavior of the expected number of miners on islands 1 and 2, conditional
on their past choices.

In the following, we will briefly characterize the limit behavior of z; =
(z1¢,22¢) as a function of both system parameters (s, «,p) and initial condi-
tions xg.

A2.2.a The case s=1

If s =1, then xg; = 1 — 21, = 1 —ay, all t > 0. Therefore (A2.14a,b) collapse
into the following 1-dimensional nonlinear difference equation:

wfy = (L= w)”

g+ (1= 2q)”

T =xp—1 + 1 (1 — z421)

= h(zi—1;0a) (A2.15)

for a > 0 and initial condition g € [0,1].

It is easy to see that the following facts about h are true: (i) h: Z[0,1] —
[0,1], all & > 0; (i) ~(0;-) = 0, h(1;-) = 1, h(3;-) = 3; (iii) ~(0;-) is C? in
Z[0,1]; (iv)Oh/0xy1 > 0 all ;4 € [0,1]; (v) 24 — h(xy_1;0) >0 for 2, ¢ < %
and ¢ — h(xi—1;0) > 0 for z—q > %; and, finally, (vi) 0%2h/02? > 0, x < ;
and 9?h/02? < 0, x > 4. Hence, the nonlinear difference equation (A2.15)
exhibits three fixed points {0, 3,1}, but only {0,1} are stable. The economy
will converge to the point x4 = 1 [conversely, x_ = 0] if 29 > & [conversely, if
zo < 3], while no dynamics will arise only if 2o = 3.

The parameter « will affect the absolute value of the rate of convergence:
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A F (=g
(St = —| It‘ = (17It—1)|xz:1 ( Tt 1)a|'
Ti—1 Ty q + (]. - xt,l)

Indeed, 6; is strictly increasing in « for x;_1 > % (i.e. when z; is increasing
toward 1) and strictly decreasing for z; | < % (i.e. when z; is decreasing
toward 0). When o = 0 (no production), then z; = h(x;—1;0) = 241 and any
initial condition is stable. When 0 < a < 1 the production exhibits decreasing
returns to scale at the islands’ level, so that the absolute rate of convergence is
very low. When the production technology is linear (o« = 1), then k(z;_1;1) =
(1 —24-1)(224—1 — 1). As « increases then the shape of the function h becomes
more curved. Finally, as a — oo, h converges to:

2 1
% T . N Ti_q, 0<mi1 < )
h*(xi—1) = aan;Oh(xt,l,a) = { Qa1 — 22|, % <ai <1

which is not defined at ;1 = . Indeed, h*(3 ) = 1 and h*(%+) =3 In
this case, the behavior of the system in undetermined as long as one starts with
initial conditions xoy = %

A2.2.b The case s>1

If s > 1, the two-dimensional nonlinear difference equation (A2.14) must be
analyzed numerically. First, it is easy to see (by inspection) that (A2.14) still
displays two stable fixed points, i.e. {(1,0),(0,1)}. However, there exist also an
interior unstable fixed point {z*(s, o, p),1 — 2*(s, @, p)}, which is a function of
the system parameters. No other limit behavior arises, as bifurcation diagrams
show.

For any s =2,3,... , the function z*(s, o, p) partitions the two-dimensional
parameter space Z[0, 1] xR into an ‘efficient’ region (i.e. such that lim; o z1: =
0) and an ‘inefficient’ one (i.e. such that lim; ., z1; = 1). Figure A2.1 shows
the projection of the bifurcation diagram onto the plane («, zp): for any «, the
curves display the value of xg such that Az; = 0, all £ > 1. As the intuition
suggests, the inefficient region shrinks as p increases for « given s - Panel (a)
- and as s increases for a given p - Panel (b). In Figure A2.2 the function
x*(s, v, p) is plotted in the case s = 2 (its shape does not change as s varies).
Notice that, as o — oo, 2*(s, , p) converges to %, as in the case s = 1. Indeed,
when returns to scale are infinitely strong, imitation solely drives the dynamics
(s has no effects) and the system either converges to island 1 or 2 depending on
x9 > 3 or ¥g < 3. Conversely, when v — 0 (no production), z*(s, a, p) — 1, as,
with no imitation, any technological gap s > 0 will imply convergence toward
the efficient technology. Finally, 2*(s, a, p) appears to be increasing both in «
and p, but the influence of the latter is very weak.
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Figure A2.1: No Exploration Model. Bifurcation Diagrams for Dynamical
Systems governing the Average Behavior of the System as a Function of the

Proportion of Initial Miners on the Inefficient Island (xg) and Returns to Scale (av).

o
Left Panel (a): Increasing the Locality of Information Diffusion (s=3). Right Panel
(b) Increasing the Technological Gap between Islands (s=0.1)(North-East Portion:

Convergence toward Island 1; South-West Portion: Convergence toward Island 2)
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Figure A2.2: No Exploration Model. Numerical Analysis of the Unstable
Fixed Points of the Average Behavior. The Function z*(s, o, p) for s = 2.
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Appendix 3

All Montecarlo (MC) studies presented in Section 5, 6 and 7 refer to the fol-
lowing type of experiment. Let {(w) = [{(w,0),{(w,1),... ,&(w,t),... ,&{(w, T/
be some time-series generated by the model under the parametrization w € Q2 =
{(p. o, A\, w6, N, T) € 03 x [0,1]3 x X?} and consider the (T'+ 1) x M matrix
Z(w) whose columns are made by M independent replication of (w). Then,
given some statistics S(£(w)), we are interested in assessing how the moments
of the MC distribution X (w) = {S(,,(w)), m = 1,..., M}, especially mean
and variance, depend on w.

The goal of such exercise is to roughly estimate how the moments of inter-
est (computed with respect to the true but unknown data generating process)
changes as one moves across the parameter space. Consider, for instance, the
case in which S(g,(w)) = gm(w) = (@1 /@m,0)"TTD 1], i.e. the AGR of the
economy over T'+1 periods. To understand how different behavioral and system
parameters affect the average performance of the economy, one can employ, by
the analogy principle, the MC sample mean:

Gu(w)=M"" ng(w)

to estimate the underlying relation: w — E[g,,(w)]; and the MC sample
variance:

72, (@) = MY [0 (@) — [Far @)

to study both the reliability of g,;(w) as an estimator of E[g,,(w)] and,
more importantly, to assess how system parameters affect the variability of the
economy’s performance across independent simulations.

In general, all MC experiments have been carried on over M = 10000 inde-
pendent simulations. This choice of M has been suggested by two related obser-
vations. First, MC distributions become sufficiently symmetric for M > 1000
(see Panel (a) of Figure A3.1 for an example with AGRs) so that one may
definitely employ to estimate E[g,,(w)] in the majority of parametric setups.
However, when the system is fueled with high opportunities (i.e. both A and 7
very large), AGR distributions (as well as those of other statistics) display some
asymmetry with heavy right tails, due to the increasing likelihood of exceptional
discoveries. In all those cases, both the median and the mean of the MC dis-
tributions have been computed and plotted against system parameters. Yet, all
the main results presented in the paper are not affected by the choice of the
statistics when M >> 1000. Second, recursive analyses have been performed to
assess if, and how fast, MC moments (of any order) converge toward a stable
value. For a sufficiently large sample of the relevant regions in the parame-
ter space, sample moments of MC distributions over the first M* simulations
(where M* = My, Mo+ 1,... ) have been plotted against M*. In all cases, one
observes convergence after a number of MC replications well below M = 5000,
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cf. Figure A3.2 for an example with the MC AGRs first four moments in a
high-opportunities setup.

Finally, as long as AGRs experiments are concerned, it is worth noting that
all results presented in the paper are computed by replacing g, 7 by:

v—1
Qm,T(U) = Uﬁlzqm,T—q—
7=0

in the expression gy, (w) = [(¢m,7/qm,0)*/ TV — 1]. This has been done in
order to reduce the dependence of g,,(w) on T. Usually, we set v = 10.

Figure A3.1: Two Examples of Montecarlo Distributions of AGR across M=1000
simulations. Panel (a) on the left: Low Opportunities (A = 1,7 = 0.1). Panel (b) on
the right: High Opportunities (A = 5,7 = 0.4).
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Figure A3.2: An Example of Convergence of Montecarlo Moments (of AGR) in a
High Opportunity Setup. Recursive Moments computed for subsequent samples
[0,M]), Parameters: A=5, m=0.4, p=0.1, e=0.1, a=1.4, p=0.4, N=100, T=1000.
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Appendix 4

Assume that the change in log of GNP Ag; follows a stationary ARM A
process. Then Ag; will admit a MA(co) representation of the form: Ag, =
A(L)vy, where A(L) = 1+ AL + AsL? + ..., L is the lag operator and vy
is white noise. Following Cochrane (1988) and Campbell and Mankiw (1987,
1989), we computed estimates of the following persistence measures:

: 1 Var(qarsr — q
vk = =|1+2 1- ,
kE+1 Var(gyr — ¢) Z k —I— 1

where p; is the j-th autocorrelation coefficient of Ag;; and

D=1+ A,
j=1

Notice that if {g;} were trend-stationary, then A(1) = 0, while V* ap-
proaches zero as k grows. Conversely, if {¢;} followed a random walk, then
Aj =0, all j > 2, so that A(1) = V¥ =1, all k. Hence, if {q;} were even more
persistent than a random walk, both A(1) and V* would exceed unity. Note

also that:
v
A=\ 1w

where V = limp_oo VF = 142(p, +py+...) and R = 1-Var(v,)/Var(Ag).
Estimation of V* and A(1) can be done non-parametrically employing sam-
ple estimates of the autocorrelation function, i.e. 7; = %(4)/4(0), where

and Ag; is the sample mean. We employed both first differences of log(GNP)
and GNP growth rates {h;} as the basis for computing estimates of output
growth autocorrelation functions without any significant differences. Notice
that both {Ag;} and {h;} appear to be stationary around a mean very close to
zero (i.e. Agq; = hy = 0). The results presented in Table 4 are for {h;}.

An estimate of V¥ (consistent for V if & is large) is found simply by replacing
population auto-correlations with sample counterparts (once having corrected
by a downward bias), i.e.:

o T
Vf—T 1+2Z( k+1>r
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while A(1) must be estimated non-parametrically (for large k) by

Vlc
lfr%'

AR(1) =

Notice also that since 3 underestimates B2, A*(1) tends to underestimate
A(1) for large k. Also, the standard error of V* is equal to:

1
Sk k 3T 2
SE(VF)=V {4(]‘3* 1)}

Then, if one would like to test whether the data come from some ARM A(p, q)
process, one can plug the true value of V* (computed under the null). In
our analyses, however, we employed the standard deviations of the Montecarlo
distribution of estimates over M = 1000 replications. Both Montecarlo standard
deviations and theoretical standard errors are increasing with V¥ (or with its
estimate).

Campbell and Mankiw (1989) provide Montecarlo studies on 90% critical val-
ues of V¥ and AF(1) for different data generation processes and k = 20, 40, 60.
Even though one should be aware that it is generally hard to distinguish be-
tween different representations for {¢;} on the basis of a single non-parametric
estimate, a comparison of our estimates with the corresponding 90% percentiles
of an AR(2) process, leads to rejection of all stationary processes with larger
root less than 0.9.

In particular, when interactions are global, path-dependency is large, the
likelihood of radical innovations is high and the density of islands in the lattice
is small, the values of V* for {h;} fit quite well the case where {g;} is generated
by an AR(2) process with the larger root in the interval [0.9, 1.0] and the smaller
one around 0.5.
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