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1 Introduction

This work — which is part of a larger on-going research on industrial dynamics — investigates the patterns
of change in the international pharmaceutical industry, in particular with respect to the industry structure
and the growth processes of a large sample of incumbents, against the background of the observed patterns of
innovation.

Pharmaceuticals are indeed an archetypical example of a “science-based” industry, whereby innovation is
driven, to a large extent, by joint advances in pure and applied sciences, together with complementary progress
in research technologies — undertaken both within public research institutions and business firms.

In turn, innovation itself, in the form of new therapeutical entities, and imitation/improvements of existing
ones, is the fundamental source of competitiveness within the industry, largely shaping the dynamics of growth
and decline of different firms.

As such, the industry represents also a rich domain for the analysis of the properties of microeconomic
processes of growth, possibly with theoretical implications well beyond its sectoral boundaries — touching the
characteristics (and time profiles) of industrial structures, the underlying dynamics of inter-product/inter-firm
competition and of corporate diversification across markets.

Indeed, one of the questions that this work addresses concerns the statistical properties of firm growth —
and the ensuing size distributions — over the “window of observation” of around a decade, taken within a
longer process of industrial evolution which we shall qualitatively characterize in its basic features below.

In the pharmaceutical industry, since its origin, innovation — in primis, in the form of new therapeutical
products — has been a fundamental determinant of the competitive strength, profitability and market shares of
each firm. Circumstantial evidence suggests that “big innovations” — i.e. compounds which address previously
uncured diseases or substitute existing treatments with different biochemical mechanisms and outcomes —
come relatively rarely, often marking the competitive position of whole firms (think of aspirin with respect to
Bayer or, more recently, the anti-ulcer Zantac in the case of Glaxo...). At the same time, an intense activity
of improvements, “inventing around”, and licensing, generally allows late comers to each therapeutical market
to gain relevant shares, even well before patent expirations of the early “prototypical” innovation. These,
intra-market dynamics, together with the processes of diversification across markets, determine the dynamics
of internal growth of firms.

In Section 2, we shall reconstruct some characteristics of these basic evolutionary patterns. Given them, in
Section 3 we shall study the resulting properties of corporate growth and international industrial structures,
with respect to the top 150 incumbents operating on the 7 major western markets.

A classic benchmark in this type of analysis is a Gibrat-type question, addressing the relationship between
size and growth over time and in particular possible departures from the so-called “Law of Proportionate
Effect”, entailing processes of stochastic growth uncorrelated with firm sizes.

The literature on the subject is vast and cannot be surveyed in any detail here (cf. Ijiri and Simon, 1977,
and for recent critical discussions of both the evidence and the related theoretical implications, Boeri, 1989a;
Brock, Evans, 1986; Sutton, 1997 and Geroski, 1999).

Telegraphically, the existing empirical evidence appears to suggest erratic growth rates (with low or inexis-
tent autocorrelation over time) — often found to be uninfluenced by initial size in their means and (negatively)
influenced in their variances — and rather high persistence of sizes themselves (thus conflicting with any notion
of a transitory dynamics toward some “optimal” size)®.

There are some important limitations to the quality of many data samples on which these conclusions are
based. One of them, which we shall avoid in this work, is that many studies are undertaken using firms as sole
unit of analysis even, when they embody a collection of different production activities and operate in different
markets. In turn, this type of aggregation might wash away more systematic but technology-specific effects.

All this notwithstanding, it remains true that the foregoing evidence raises a few theoretically puzzling
issues. For example, could it be taken to mean that constant return to scale are the norm throughout modern
industry and that growth is basically driven by several small and idiosyncratic events (as Ijiri and Simon,
1977 suggest)? How does this statistical evidence stand vis-a-vis other more microeconomic-based evidence on
systematic and long-standing differences in technological and organizational competencies across firms??2

An analysis based (as we do in the following) on longitudinal data in a well-defined industry — with also
disaggregate observations down to individual product markets — allows to shed new light on these questions,
in that one is able to characterize, at least qualitatively, the systematic forces driving the evolution of the
industry, the sources of heterogeneity across firms and the nature of “technological shocks” and of competition

Lcf. among others Boeri, 1989a; and 1989b; Geroski, Urga, Walters, 1997; Geroski, 1999; Hall, 1987; Leonard, 1988; Sutton,
1997.
2The point is discussed from different angles in Dosi et al, 1995, 1997 and Geroski, 1999.



Company Rank | M.Share | Company Rank | M.Share | Date
Roche 6 3.73 | Boehringer M. 67 0.24 5/97
Sandoz 11 2.63 | Ciba-Geigy 13 2.56 3/96
Rhone-P. R. 16 2.14 | Fisions 61 0.36 | 12/95
Pharmacia 29 1.27 | Upjohn 20 1.60 | 11/95
Hoechst 4 3,20 | Marion M. D. 23 1.50 | 7/95
Glaxo 2 4.52 | B. Wellcome 19 1.63 | 3/95
Am. Home Pr. 11 2.54 | Am. Cyanamid 21 1.52 | 12/94
Rhone-Poulenc 20 1.75 | Rorer 36 0.92 7/90
Am. Home Pr. 7 2.59 | Robins A. H. 62 0.39 | 12/89
Bristol-Myers 13 2.02 | Squibb 18 1.78 | 10/89
SmithKline 23 1.60 | Beecham 22 1.61 | 7/89

Table 1: M&A activity among the top100 firms, 1987 - 1997 (sources: Scrip League Tables)

processes. Putting it the other way round, one is able to investigate the statistical properties which are
“emergent” from specific evolutionary dynamics of heterogenous learning and market selection.

Our results, while broadly in line with previous findings corroborating “weak” versions of the Gibrat Law
(i.e. independence of growth rates from size) highlight also a much richer structure of the growth process
than previously found, with significant autocorrelation appearing at all levels of aggregation, a fat tail of “big”
growth events, plausibly associated with major innovations and with the emergence of new product markets,
and the stability of an oligopolistic core of the industry which maintains itself via diversification across diverse
therapeutic markets and “horizontal” innovative capabilities across them.

2 The evolution of the industry: an overview

The history of the international pharmaceutical industry has already been extensively analyzed by several
scholars®. Here let us first mention a few major characteristics of innovation processes, competition and
industrial structures.

The origin of the industry dates back to the late 19th century and is indeed one of the early examples of
commercial exploitation in organized manners of scientific search and discoveries, beginning with the emergence
of the synthetic dye production and the discovery of the therapeutic effects of dyestuff components and other
organic chemicals.

Before the 1930s, pharmaceutical innovation was almost completely dependent upon few large, diversified,
and vertically integrated German and Swiss firms, such as Hoechst, Bayer, Ciba, Sandoz. These firms entered
the industry in the late nineteenth century and manufactured drugs based on synthetic dyes, being able to
leverage their scientific and technical competencies in organic chemistry, chemical synthesis and medicinal
chemistry.

On the contrary, until the 1920s, the US and UK pharmaceutical industries consisted largely of relatively
small and focused firms (Glaxo, Wyeth, Pfizer, Eli Lilly, Warner-Lambert, Burroughs-Wellcome), and relied
upon imported technology for a large part of pharmaceuticals, as well as for other important segments of the
chemical industry (dyestuffs, fine chemicals), drawing upon subsidiaries and affiliates of foreign firms (Arora
and Gambardella, 1998).

The early emergence of a restricted group of firms with large-scale in-house R&D capabilities was a con-
sequence of the nature of pharmaceutical R&D in the chemical synthesis paradigm and, in particular, of the
appearance of a dominant routinized regime of search — paraphrasing Nelson and Winter (1982) — based on
extensive exploration of chemical compounds and on incremental structural modifications of drug prototypes,
organized around highly structured processes for carrying out mass screening programs (cf. Schwartzman,
1976). Throughout the evolution of the industry “the organizational capabilities developed to manage the
process of drug development and delivery — competencies in the management of large-scale clinical trials, the
process of gaining regulatory approval, and marketing and distribution — also have acted as powerful barriers
to entry into the industry” (Henderson, Orsenigo, Pisano, 1999).

3See Aftalion, 1959; Ackerknecht, 1973; Arora, Gambardella, 1998; Bovet, 1988; Chandler, 1990; Freeman, 1982; Gambardella,
1995; Henderson, Orsenigo, Pisano, 1999; Orsenigo, 1989; Pammolli, 1996.



NCE Major Marketing Corp. | 1992 | 1993 | 1994 | 1995 | 1996
Total Number 23 20 15 24 29
Risperidone Johnson & Johnson 0 6 173 344 522
Finasterine Merck & Co. 34 173 293 365 389
Paclitaxel Bristol Myers Squibb 0 124 206 288 380
Fluvastatin Novartis 0 0 38 156 291
Losartan Merck & Co. 0 0 0 60 271
Cefprozil Bristol Myers Squibb 78 138 176 209 242
Alendronic Acid | Merck & Co. 0 0 11 45 221
Venflaxine American Home 0 0 62 122 206
Epinastine Boeheringer Ing. 0 0 73 225 186
Lamivudine Glaxo Wellcome 0 0 0 7 181
Loracarbef Lilly 14 80 122 158 160
Gabapentin Warner Lambert 0 1 28 76 158
Dorzolamide Merck 0 0 0 32 126
Abciximab Lilly 0 0 0 16 117
Aniracetam Roche 0 17 52 95 115
Pantoprazole Altana 0 0 8 50 114
Saquinavir Roche 0 0 0 4 110
Ceftibuten Sharing Plough 3 23 44 67 95
Tazobactam America Home 0 4 41 68 91
Famciclovir SmithKline Beecham 0 0 19 50 87
Nefazodone Bristol Myers 0 0 1 44 86
Rocuronium B. Akzo Nobel 0 0 17 53 81
Trandolapril Hoechst 0 11 26 45 76
Cefpirome Hoechst 0 19 82 106 75
Dornase Alfa Roche 0 0 40 62 72
Aceclofenac Bristol Myers 12 26 36 51 70
Bicalutamide Zeneca 0 0 0 6 70
Stavudine Bristol Myers 0 0 6 32 69
Desflurane Pharmacia & Upjohn 0 13 45 59 65

Table 2: Sales of New Chemical Entities in USD millions, 1992-1996 (source: our elaborations on IMS Inter-
national)

War World IT induced a massive jump in research and production efforts, sponsored by the US government
— especially in the field of antibiotics — which fostered accumulation of vast search capabilities in US firms
and their entry into the international oligopolistic core.

Following World War II and the commercialization of penicillin, pharmaceutical companies embarked on
a period of massive investment in R&D and built large-scale internal R&D capabilities (Henderson, Orsenigo,
Pisano, 1999). Also benefiting from the dramatic increase of public support of biomedical research and
health care expenditure in the post war period, the international pharmaceutical industry experienced a
significant wave of discovery, with the introduction of several hundreds of new chemical entities in the 1950s
and 1960s, from hydrocortisone and several other corticoids, to the thiazide diuretic drugs, to major and minor
tranquilizers, to the initial birth control products (Grabowski and Vernon, 2000).

Throughout its evolution, the industry has been characterized by a significant heterogeneity in terms of
firms strategic orientations and innovative capabilities. Competition has always centered around new product
introductions, often undertaken by the oligopolistic core of the industry, subject to both incremental advances
over time, as well as to imitation and generic competition after patent expiration (allowing a large “fringe”
of firms to thrive). In a good approximation, the “oligopolistic core” of the industry has been composed by
the early innovative entrants joined after World War II by few American and British firms. At the same time,
until the mid-1970s a relatively small number of new firms entered the industry, and even less in its “core”.

However, things began to change since, with a major transition in the “technological paradigm” underlying
search activities, from one based on pragmatic knowledge and quasi-random screening to another one of “guided
discovery” (or “discovery by design”). This is linked with major advances in biological sciences, including



Year ‘87 | ‘88 | 89 ‘90 ‘91 ‘92 ‘93 ‘94 ‘95 ‘96 ‘97
Total 919 | 994 | 1360 | 1287 | 1407 | 1345 | 1465 | 1214 | 1369 | 1687 | 2391
% top 25 85 84 85 83 83 81 78 78 79 76 77

Table 3: Patents granted to the top 100 firms, 1987-1997 (source: our elaborations on USPTO)

molecular and cell biology, biochemistry, protein and peptide chemistry and physiology*. The application of
these new bodies of knowledge to the pharmaceutical industry has had a paramount impact on the nature of
R&D activities and on the organizational capabilities required to introduce new drugs®.

Together the “molecular biology” revolution has had (and is having) also major consequences on the
patterns of “division of innovative labor” (Arora and Gambardella, 1994; Gambardella, 1995) fostering the
emergence of specialized suppliers and pure search firms; moreover, the dramatic increase of plausible disease
targets offered novel opportunities of entry for a few new small firms into new product markets.

However, this transformation in the knowledge bases of the industry does not appear to have eroded the
advantages of incumbency (in particular, core incumbency) in the industry.

First, sunk costs required for discovery/development/testing have increased dramatically, due also to the
introduction of more stringent efficacy and safety regulations. Nowadays, an R&D project for a new drug is
likely to last 12-14 years, with a cost in the range of $ 350-600 millions. And to all that one ought to add the
“sunkness” associated with marketing infrastructures (More on these aspects of the industry in Sutton, 1998).

Second, while the “molecular biology” paradigm has increased the importance of publicly generated (sci-
entific) knowledge, it appears also to have increased firm-specific economies of scope related to serendipity in
search competencies and knowledge spillover across projects (cf. Henderson and Cockburn, 1996; Henderson,
Orsenigo and Pisano, 1999).

Third, the oligopolistic core of the industry has been playing a crucial integrative role across different
bodies of knowledge, as well as providing critical complementary assets in clinical development, regulatory
affairs and distribution channels.

Indeed, the last two decades have witnessed two major waves of Mergers and Acquisitions deeply affecting
the levels of concentration of the industry. The first, at the end of the Eighties, involved top firms like
Smithkline and Beecham, Bristol Myers and Squibb, Rhone Poulenc and Rorer. Even more so, the second
wave started in the mid-90s, has involved well established members of the core like Hoechst and Marion Merrell
Dow, Pharmacia and Upjohn, Glaxo and Wellcome, Ciba Geigy and Sandoz, Roche and Boehringer and more
recently Glaxo Wellcome and SmithKline Beecham.

For a qualitative appreciation of the magnitude of the M&A process, Table 1 lists all the events concerning
the top 100 firms over the period 1987-97. The oligopolistic core of the industry has continued to be up to
present the overwhelming originator of “major” innovations — i.e. New Chemical Entities (NCEs) with novel
pharmacological activities. So, for example, over period 1992-96 — on which we were able to elaborate the
data — the top 25 firms were responsible for more than 90% of the NCEs launched on the major European and
North American markets (see Table 2, reporting the list of the top-selling NCEs: all but one were marketed
by the top 25 companies). A similar proportion emerges from the list — based on marginally less demanding
criteria — complied by Barral (1996) on the period 75-94.

It is important to notice also that, notwithstanding the high R&D intensity of the industry, the successful
introduction of NCEs has to be considered as a quite rare event. Indeed, estimates suggest that, out of all
new compounds that are discovered only one over 5,000 reaches the market (Holliday, Walker and Lumley,
1992). So, as Table 2 shows, the rate of introduction has been of the order of a couple of dozens per year, and
concentrated in some fast-growing areas such as central nervous system, cardiac therapy, anti-infectives and
cytostatics. Similarly, Barral (1996) estimates the total number of NCEs introduced throughout the world
over the period 75-94 to be 154. Innovative new drugs arrive quite rarely but after the arrival they experience
extremely high rates of market growth: cf. Table 2 (more on this point in Gorecki, 1986; Grabowski and Vernon,
1992; Robinson, Kalyanaram, Urban, 1994; Dranove and Meltzer, 1994; Office of Technological Assessment,
1993).

New Chemical Entities, however, only capture a part of innovative activities, broadly defined — including

4During the Nineties, the new research paradigm has been associated also with new research technologies which achieve a
higher breadth of applications in terms of both disease areas and biological targets - including Polymerase Chain Reaction; protein
structure modeling; rapid computer based drug assay and testing; recombinant chemistry; chemical separation and purification
techniques and combinatorial chemistry that allow to screen thousands of potentially promising compounds and to generate a
large number of peptides and other organic molecules (Sneader, 1996; Orsenigo, Pammolli, Riccaboni, 2000).

5cf. Henderson and Cockburn, 1994, 1996; Galambos, Sturchio, 1996; Orsenigo, Pammolli, Riccaboni, 2000.
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Figure 1: Angiotensin-II Antagonists: Size of the market and firms/products sales, 1987-1998 (US.$ millions)

“inventing-around” existing molecules, new combinations among them, new ways of delivering them, etc. In
order to get a rough order of magnitude compare the foregoing data on NCEs with the number of patents
granted in the US to the top 100 companies in the sample described in detail below (Table 3). The share of
the “oligopolistic core” is also lower — around 80% of the total is accounted by the top 25 firms.

Another remarkable phenomenon is that persistency in the innovative record applies to the oligopolistic core
as a whole and also to individual core firms when observed across the whole spectrum of therapeutic classes but
does not apply within single classes. As Sutton (1998) points out the degree to which early innovators enjoy
an advantage in introducing later major drugs within the same family has traditionally been fairy limited (p.
198). That, together with the coexistence-existence of several compounds or variations thereupon targeted to
the same pathology generally hinders the persistence of dominant positions in a single market (cf. also Temin,
1980).

In fact, in most single markets and in the industry as a whole one observes the (persistent) co-existence of
two basic types of firms, mapping into distinct technological competencies and competitive strategies.

In a shorthand, the first group, closely corresponding to the core, undertakes what is sometimes called “pi-
oneering R&D” (Grabowski and Vernon, 1987); generates the overwhelming majority of NCEs; when successful
enjoys big, albeit not very long-lasting, first-mover advantages, and charges premium prices. The second group
undertakes primarily “imitative R&D”; generates incremental innovations and more competitively priced “me-
too” drugs; takes up licenses from the core and is present to different degrees in the “generic” markets, after
patent expirations®.

One is tempted to depict a long-term “ecology” of the industry relying on the competition, but also the
complementarity, between two organizational populations, whose relative sizes is shaped by diverse competen-
cies in accessing innovative opportunities (and, to some extent, also by Intellectual Property Right regimes,
influencing the span and length of legal protection for temporary monopolies on innovation).

In a nutshell, the archetypical evolutionary story concerning each “disaggregate” market (i.e. a market
aimed at one particular pathology) runs more or less as follows.

A few firms — generally from the “core” — search for NCEs with the desired properties. Some of them
(a small minority) achieve the stage of clinical trials. Even among them only very few happen to immediately

i

6The two basic types are not evenly distributed across countries. Firms belonging to the former come almost exclusively from
the USA, Germany the UK and Switzerland, while France, Italy and Japan (not included in our sample) show up primarily in
the second group.
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Figure 2: Antiulcerants: Acid pump inhibitors and H2 antagonists: Size of the markets and firms/products
sales, 1987-1998 (US.$ millions)

fulfill therapeutic efficacy and required safety standards. Many NCE prototypes, on the contrary, show various
clinical shortcomings which might sometimes be overcome by alterations to the original chemical structures,
the introduction of compound combinations, or different ways of administering them. In some cases these
changes are undertaken by the original discoverer of the compound itself, while frequently the project based
on that particular NCE is abandoned — leaving potential room for the development of modified analogues
by other firms. Moreover, even when the original innovator carries the project through to a marketable prod-
uct, molecular modifications of prototypes often unable followers within any chemical/therapeutic trajectory
to introduce drugs with equivalent (or even superior) pharmaceutical activities, side-effect profiles, patient
tolerability, etc”.

Come as it may, when the first-coming NCE successfully reaches the market, it generally undergoes a very
fast market diffusion (cf. the examples in Tables 2 and Figures 1,2,3 below), partly through the competitive
displacement of “older” drugs — whenever they exist for that particular therapeutic application — and, even
more importantly, through the creation of its own fast-growing market niche.

Quite soon, however, the niche (i.e. the product market) is invaded by competing NCEs and/or “creative
analogues” which curb the growth of the early monopolist. All this might happen well before the expiration
of the original patent — even if the latter event generally marks another “market shock”, with generic drugs
(and, correspondingly the second type of firms, as discussed above) expanding on the market.

Note that in the evolutionary story we have just sketched there are two basic dynamic processes at work. A
first one concerns the multiplication of markets (i.e. families of products based on similar chemical compounds
and aimed at the same therapeutic targets) and, to varying degrees, the competition amongst them. The
second process regards competition stricto sensu amongst firms within each market. Clearly the growth of
firm size depend on both, with the timing of entry being an important factor in the combination of the two
effects.

Figure 1 to 3 illustrate the market dynamics associated with evolutionary patterns sketched above. The
first case show the profile of a entirely novel market, angiotensin IT antagonists, in the cardiovascular area. The
new niche expands very fast allowing for the steady growth of both the first-comer and other early innovators.
Here, in a sense, a fast expanding market provides “room for everyone” — and with that also expanding sizes
(in that market) for all early incumbents.

"Sneader (1996) presents a detailed analysis of 244 currently employed drug prototypes, showing that out of them more than
1200 medical compounds have been derived.
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Firm % on total sales
Glaxo 75
Pfizer 60
Upjohn 58
Eli Lilly 56
SmithKline Beecham 53
Merck&Co. 52
Marion Merrell Dow 50
American Home Products 32
Johnson&Johnson 30
Bristol Myers Squibb 28

Table 4: % on total sales, three most important products, 1995 (source: Datamonitor)

Figure 2 illustrates the case of antiulcerants, with two families of products (i.e. two niches), namely H2
antagonists — the older one — and acid pump inhibitors — the new one, which over time crowds out the former.
All that goes together with the fate of the two leading NCEs/products (Zantac and Losec, respectively), while
new “innovative invaders” only in the late 90s begin to enter the younger niche.

Finally, Figure 3 depicts a market, antivirals, where the first innovative mover (Zovirax), despite a steady
erosion of its market shares by late-coming innovators and analogues, maintained its dominance until patent
expiration, in 1997, by which date a swarm of generic competitors entered the market?.

A final set of characteristics of the evolutionary dynamics of the industry that we want to recall concern
the nature of product market themselves. In line with other findings on e.g. the size distribution of returns
on innovation (see among others, Scherer, Harhoff, Kukies, 2000, and more specifically on pharmaceuticals,
Office of Technological Assessment, 1993) one observe a highly skewed distribution of product market sizes.
Figure 4 presents the distribution of the top 1,000 products in 1997 °. A similar phenomenon appears when
looking at the intra-firm distribution of sales across products. So “a few ‘blockbusters’ dominate the product

8Note that the decrease in the total “size” of the market after 1996 is entirely due to price restrictions, with quantities still
rising
9Product sales are calculated calculated summing the 7 major western national markets (see below).
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range of all major firms” (Matraves, 1999, p.180; Sutton, 1998)1°: Table 4 illustrates the share of the first
three most important products over the total sales of some major firms.
In an extreme synthesis, the evolutionary patterns of the industry display (see also Sec. 3.4):

e rare arrivals of major innovations (new chemical entities with novel therapeutical targets or pharmaco-
logical mechanisms) associated with the emergence of new markets;

e a more steady activity of incremental innovation, development of therapeutic analogues, imitation, li-
censing;

e systematic forms of heterogeneity, even amongst incumbents, distinguishing a few rather persistent in-
novators from the rest of the organizational population;

e “hierarchically nested” competitive mechanisms!! involving, at one level, innovation /imitation and mar-
ket share dynamics within single product groups, and, on a longer time scale, the generation of new
markets and the diversification processes across them.

Given all that, what are the properties of statistical magnitudes summarizing the structure and collective
evolution of the industry, in terms of relative sizes, rates of growth, etc.? This is what we shall analyze in the
following.

3 Patterns of corporate growth: data and statistical evidence

Our statistical analysis in the following is based on the dataset PHID (Pharmaceutical Industry Database)
developed at the University of Siena. It covers top incumbents in the seven major western markets (USA,
United Kingdom, France, Germany, Spain, Italy, Canada) with 10 to 20 years of observations (depending on
the variables). Sales by each firm stand for the sum of its sales in each of the national markets. The sample of
the top 210 firms is obtained as the intersection of the top 100 (in terms of sales) in each national market, at
the beginning of the period of observation. The choice of the time-zero ranking is obviously meant to avoid a

10\atraves, 1999 also suggests that only the top 30 drugs worldwide cover average R&D costs.
1'We borrow the expression from Warglien, 1995.



14 T T T T 25 T T . . . : : . .
W ﬁé
g =0+
2r 1 2r % g (E10) o
fittop 25 ===
log(mean) —+— S,
stdev/mean ---x--- 5
15 | - 4
10 | Skewness ---%--- |/ “mi’i:
Kurtosis 8- ‘g
+E
1r b i
°T I )
EN
8. o e - S I o 05 F i
; 0 = SN
6 2. | w%%
i .\
°r e 7
-0.5 e,
o o 1r 4
@ ®)
0 1 1 1 1 15 ) ) ) . ) ) | | |
0 2 4 6 8 10 0 5 10 15 20 25 30 35 40 45 50
t (year) rank
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size vs. rank. Both the initial ¢ = 0 and final ¢ = 10 distribution are shown. The linear fit is performed over
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sample selection bias in favor of the most successful ones, even if at the cost of censoring some (in actual fact
very few) entrants among the top ranks !2. Both sales figures and market shares are available for each firm
from 1987 to 1997, disaggregated up to the 4-digit-level of the Anatomical Therapeutic Classification scheme
(ATC) in 517 microclasses.

Our database contains information about sales of 7654 drugs commercialized in the US by 57 major
pharmaceutical companies. The data of launch is reported for 4921 of them (64.29%). Launches are quite
evenly distributed over the last 20 years, so one is able to track the life cycle for only 1600 products over 10
years after their launch. Products are distinguished according to whether they are a New Chemical Entity
(NCE), a patented innovation that is not an NCE, and unpatented product (including both products whose
patents expired before the “windows of observation” spread and products licensed from other firms).

As already mentioned, this work is focused on the processes of internal growth. Hence, to take into account
mergers and acquisitions during the period of observation, we have constructed “super firms” which correspond
to the end-of-period actual entity (so for example, if any two firms merged during the observed history, we
consider them merged from the start). This procedure clearly biases intertemporal comparisons on actual size
distributions, but it helps to highlight those changes in the distributions themselves which are due to processes
of intra-market competition and inter-market diversification.

Finally, note that when studying the relationship between innovation and growth (Sec. 3.4 below) we shall
confine the analysis to new product launched on the US market and, symmetrically, to the dynamics of US
sales. We choose to do that since institutional and regulatory differences are likely to introduce country-specific
biases in the apparent “innovativeness” of any drug. In any case, the US represents by far the largest market,
wherein the overwhelming majority of innovative products are introduced.

3.1 Size distributions

Let us begin with a descriptive analysis of size distributions (with the above caveats in mind). Let S;(t) be
the sales of firm ¢ (i € [1,...,150]) at time ¢ (i € [0,...,10]). In Figure 5 we plot the first moments of the
S(t) distribution as a function of time: the ratio of the standard deviation to the mean is constant as well
as skewness and kurtosis, suggesting the stationarity of the distribution. Given this, in the following we shall
study the “normalized size” G;(t) = S;(t)/ < Si(t) > (brackets < ... > denote the average over all firms under

121n the following we consider only the top 150, for several reasons of statistical cleanliness, the most important being the
possibility that the lower ranks include national firms which are “big” in one single market but smaller than other firms, left out
of the sample, operating on other markets.
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Figure 6: (a) Probability density for firm size. The “average” distribution obtained using values from all the
time steps is plotted with bars. Lines show the distribution computed using values from one time step only.
(b) Size distribution function (lower half) (c) Size distribution function (upper half). A fit with the normal
distribution is also shown.

consideration). This quantity is proportional to the market share when the number of firms is constant but
provides two advantages: first, it can be used also to characterize distributions whenever the number of firms
changes over time (while the shares distribution would yield a spurious shift of their means) and, second, it
provides an easy way of comparing distributions with different number of observations.

The higher moments of G and S suggest a highly skewed and “fat tailed” distribution. We consider
the logarithm of the normalized size ¢;(t) = log(G;(t)). In Figure 6 we plot the probability density and the
distribution function for g. On the assumption that the size distribution is stationary we estimate an “average”
distribution using the complete time series for each firm!'3 (For an illustration of the degrees of accuracy of
such an approximation, we present in Figure 6a also the probability density for g at ¢ = 0 and ¢ = 10).

The size distribution shows a distinct shape over firms until the 20 — 25 rank in term of size (see Figure 5b),
which rather closely correspond to the boundaries of the oligopolistic core of the industry.

Since the higher moments of the g distribution are low (cf. Figure. 5a) one may perform a Gaussian fit.
While we would not trust too much any analysis of the lower tail of the distribution due to possible sample
selection biases for smaller firms, some interesting properties nonetheless emerge. The fit (Figure 6b and
c¢) clearly shows that the distribution possess a fatter upper tail than the Gaussian approximation and can
hardly be approximated by a lognormal. Moreover there is no evidence of any regression toward a Gaussian
distribution as time goes on. Think of a growth process as:

gi(t + 1) = gi(t) + hy(t) (1)

with h;(t) independent random variables. For the Central Limit Theorem the n-th normalized cumulant!'*
An = ¢p/o™ of the size distribution EtT:o hi(t) would behave as A\, ~ T'~"/2 where T are the total time
steps. In particular the third and fourth normalized cumulants, the skewness and the kurtosis, would decrease
respectively as 7795 and T—!. This trend is absent from data (see Figure 5). Moreover the distribution of
size shows clearly a bimodal nature which is stationary over time!®. This bimodality would be erased by a
process as the one described in (1). Conversely, its persistence can be seen as a signal of a non trivial growth
structure and of possible violations of the so called “law of proportionate effect”. This evidence demand a
deeper analysis of the underlying growth processes, which will be performed next.

13The “binning” procedure involves averaging over a certain quantile of observations.

14, is the n-th cumulant, i.e. the n-th derivative of the logarithm of the characteristic function of the h distribution and o is
the standard deviation of the same distribution.

15We have checked that this bimodality is not produced by aggregating sales in different countries.
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t | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997
80982 | 0.991 | 1.006 | 1.008 | 1.017 | 0.997 | 1.004 | 1.001 | 1.000 | 1.005
£ 10998 | 0.989 | 1.006 | 0.958 | 1.004 | 0.982 | 0.938 | 0.953 | 0.959 | 0.978

Table 5: Gibrat test results - aggregate level, one-year time lag. R? are always greater than 0.98.
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Figure 7: (a) Probability density for the growth obtained with bins of 100 values. The bars show the “average”
distribution and the dotted lines the distributions at different time steps; (b) Distribution function for h (lower
half). (c) Distribution function for h (upper half). The fit is performed with the exponential distribution

3.2 Patterns of corporate growth

A common procedure to analyze growth processes, to which we shall adhere, is to check for departures from
the so-called Gibrat Law, that is for growth patterns deviating from proportionality of mean growth to size.
The “law” may be stated in different but statistically equivalent forms'®.

In the version proposed by Kalecki (1945) and adopted, among others, by Hall and Prais (1956) and
Chesher (1979), the Gibrat linear test refers to the dynamics of the deviations of natural logarithms of firm
sizes from their means (g;(;)(t) = s;;)(t)— < s4;)(t) >) and it is meant to provide an estimate of the
divergence/convergence of the size distribution toward its mean. In that vein, we test the following model

9i(t) = Bgi(t — 0) + &(?).
One typically concludes that the Gibrat Law is satisfied if the OLS estimator of 3 is close to unity.

After an OLS estimation of 3, the quantities €; become uncorrelated to g and then the relationship between
the variances in time is given by

(2)

o?(gi(t)) = 820> (gi(t — 8)) + 0 (c4(t)) 3)
and the correlation coefficient p becomes
2 _ o, 02(elt)
= ) @
Substituting (4) in (3), it immediately follows that
_ a) _ A
£(t) = gt—0) 2 (5)

16¢f. among others Mansfield; 1962; Tjiri and Simon, 1977; Geroski, 1999; Sutton, 1997.
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Figure 8: Time autocorrelation of the firm growth. The points are the values c(t, ) for different time ¢ plotted
against 7. The line is the mean value C'(7). The significance line for p = .001 (about 2.46 standard deviations)
is plotted for both the single points and the average.

As a result, the variance of size distribution decreases in time iif 8 < p < 1. Table 5 reports the statistics
resulting from the tests carried out over the period 1987-1997 with a one-year time lag (§ = 1). As shown
there, 8, p, € are always very close to unity, meaning that size does not exert a significant influence on expected
growth, with the variance of the size distribution remaining constant over time. In fact, given these results,
one is entitled, as we shall do, to refer constantly to (1) and analyze the distribution of h — as defined there
— since this analysis is fully equivalent to the analysis of errors (e) of (2).

In Figure 7 we plot the distribution for h averaged over all the time horizon of the sample together with the
distribution for some time steps (¢t = 0, 5,10). As can be seen differences are small, bearing the assumption, for
now onward, that the distribution of h; is stationary over time. Even if stationary, however, the distribution
plotted in Figure 7 is highly non-Gaussian. A fit with a symmetric exponential

p(h=x) = Ge = (©)

provides a good description of the central part even if the tails/ are fatter. Notice also that the distribution is
asymmetric, as can be seen both from the binned density and from the distribution function in Figure 7, with
a higher probability of relative large positive growth and few extremely large negative events, with the former
effect being statistically more relevant. Another way of stating this evidence is that the dynamics display
“spurs of growth” that are bigger and more frequent that those predictable on the ground of a noise-driven
process.

We have previously argued that the stability and the shape of the size distribution can hardly be explained
using the simplest Gibrat-type model in (1) with independent increments. An interesting problem concerns
indeed the identification of possible sources of “dependence” in the growth process governing this industry.

The first effect to analysis is the possible autocorrelation in time of a firm’s growth. In Figure 8 we plot the
autocorrelation coefficient of the logarithmic growth ¢(t, 7). The plotted line is the average¢(7) = E;;F c(t,m)/T,
where T is the number of years covered in our database!”.

If one considers the average correlation C(7), contrary to the prevailing results in the literature (for a
critical discussion cf. Geroski (1998) and (1999)) our data do highlight on average a significant (p < .001)
positive autocorrelation until the second lag 7 = 1,2 (while we do not dare making any claim on longer time

7The points relative to the same lag 7 but different initial time t are dispersed, partly for the relatively small number of
observations and partly for a seemingly “true” difference in the growth from time to time (indeed there are points separated by
more than 3 standard deviations). In any case, the hypothesis ¢(¢,1) = 0 is rejected with a significance greater than .001 in 7
over 9 time steps t.
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Figure 9: Gibrat test at the 3-digits submarket level, one year time lag. Boxplot (a) reports the distributions
of B;(t) while (b) depicts the distributions of &;(t). (cf. (2) and (5))

lags)'®. Figure 8 refers to the growth of firms as a whole. However, it is equally interesting to investigate
the persistency profiles by firms within single therapeutic categories (“sub-markets”). Indeed this is a level of
observation nearer to the actual competition process, where innovative shocks are likely to exert their effect
(after all, cardiovascular drugs do not compete with antibiotics etc.).

Let h; ;(t) = 9:,;(t) — 9:,;(t — 1) be the (logarithmic) growth of the firm ¢ in the sub-market j. Remember
that g is defined as the logarithm of the “normalized” size G. Here the G; ;(t) is normalized using the size of
the j-th sub-market M;(t). We then test the analogous to (2) and (5) at the disaggregate level'®. Figure 9
reports the values of 3(t) and &(t) for each sub-market j. Notably in line with the aggregate results, the
median of §;(t) stays quite close to unity over time even if the distribution of 3;(t) denotes a certain degree of
heterogeneity among sub-markets ranging from 0.82 to 1.14. On the contrary, the median of &;(t) distribution
is constantly above unity meaning that the variance of the firm size in sub-markets increases over time.

Next, let us look at the distribution function of the autocorrelation ¢;(7) over the set of all the sub-markets
and plot it for different 7 lags. Figure 10 presents the results for different level of disaggregation (1—, 2— and
3— digits, according to the therapeutical classification; see above). As can be seen the distributions are similar
for different disaggregations (with the caveat of different number of observations across markets for different
disaggregation level). Moreover, even if the distributions in Figure 10 have wide support, they are strongly
symmetric with small variance and Gaussian shaped.

Furthermore, Figure 11 reports the growth correlation of the two leading firms for each submarket c;’Q(T).
Remarkably, the distribution is U-shape peaked on the extreme values.

Taken together, Figure 10 and Figure 11 suggest that different market-specific growth processes coexist
within the industry, including both highly correlated and anti-correlated patterns. The inter-market het-
erogeneity might indeed be the effect of considering statistics over different “windows of observation” of a
“technology cycle” shaping the growth process in each sub-markets. Our statistics cannot discriminate be-
tween purely random micro processes and more systematic competition processes observed at random times,
but the qualitative evidence discussed in Section 2 seems to support the latter hypothesis. So, for example, one

18Notice, however, that the procedure of taking the average correlation as an estimate of a “true” (stationary) correlation is
not well grounded due to the high dispersion of ¢(t,7) for different initial time .

19We considered the 180 sub-markets including at least 20 firms out of the 302 covered by PHID. They account for the 85.6% of
the pharmaceutical market. Furthermore, we checked the invariance of our results considering sub-markets with different numbers

of competitors.

14



08 1=1 g 08 F T1=2 g

06 | . 06 .

0.4 04 .

02+ 02+ g
0 S T P

-0.8 -0.6 -0.4 -0.2 -1 -08-06-04-02 0 0.2 04 0.6 0.8 El

1 T T T l T T T T T T (J»»—*G:”.—lr: -
08 f T4 ¥ . 08 | 1>7 .
06 [/ g 06 i
04 F ; E 0.4 | e

0}
F
0.2 + P E 0.2 .

0 L 1/r’/ 1 1 1 1 1 O r»v'ﬂ'/f"i‘i:;blf 1 1 1 1 1 1

-0.8 -06 -04 -02 0 02 04 06 038 El -1 -08-06-04-02 0 0.2 04 0.6 0.8 El

one digit two digits ------- tree digits -------- four digits -

Figure 10: Distribution function of the autocorrelation coefficients ¢; (7). Different aggregation levels and time
lags 7 are plotted. The vertical lines correspond to “aggregate” values at the firm-level. The horizontal line is
centered at 0.5.

might expect positive correlation in C}’z(’l') in the stages of penetration of new products and anti-correlation
associated with imitative entry and patent expirations.

A further piece of information is obtained by comparing market-specific autocorrelations and firm-level ones.
In this respect, recall that most of the firm in our sample are diversified across different markets. Moreover,
for each diversified firm the weight of each market depends on both market size and the share of each firm
in that market. Remarkably firm-specific aggregation does not wash away autocorrelation in growth: on the
contrary, for 7 = 1, firm-level correlations are significantly higher than the average correlation calculated at
any disaggregation levels. This property disappears for 7 > 1. A positive average correlation seems to survive
for a long time even if of negligible magnitude®®

To further investigate the growth structure we have computed the one-year transition matrices of the
stochastic variable h both at the aggregate and at the 3-digit-submarket levels. Having controlled the ro-
bustness of our results for different numbers of bins (ranging from 20 to more than 200) without revealing
remarkable variations, let us present the analysis at the highest level of resolution supported by data. More
precisely, the actual rate of variation over time of the aggregate standardize growth (h;) and disaggregate ones
(hi;) have been uniformly divided into 50 quantiles and every firm has been univocally assigned to them in each
year. Since the transition matrices of h do not change substantially over time (as well as the distribution of h
itself, see Figure 7), we analyze jointly the one-year transition probability matrices. Two transition matrices
have been computed, at the aggregate (Il,) and at the submarket level (II4)

[hi(t)] = Ma[hi(t —1)] (7)
[hij(®)] = Talhi;(t - 1)] ®)

where [h;(;)(t)] are column vectors of binned growth at time ¢ and each row of II, and Il; represent the con-
ditional probability vector of moving through the grid?!. Figure 12 and Figure 13 show the three-dimensional
plot of transition matrices I, and II. To interpret the graphs, take any point on the [h;;(t — 1)] axis and
look in the direction parallel to the other axis in order to trace out the probability density describing the
transition to different parts of the growth distributions (more details on discrete stochastic kernel analysis are
in Quah, 1993). If the graphs pile up on the positive sloped diagonal this may be interpreted as evidence of
high persistence and “inertia”. Actually, Figure 12 shows that a significant auto-correlation in growth rates

20We searched also for a possible dependence of the autocorrelation ¢;(7) on the size M; of the sub-markets themselves, but
no evidence of any such dependence has been found.
21The exercise is similar to that presented in Quah, 1993, 1996.
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Figure 11: Correlations of the first and second firms growth in each submarket, C;’Q(T).

is in place at the aggregate level. Specifically, a slantwise shape clearly emerges which may be fitted by a
line with slope 0.38 passing through the mean values of h;(t) and h;;(t — 1), in line with our previous find-
ing. Over time, the growth distribution converge toward its mean value where most of the observations are
concentrated. However note that auto-correlation appears to be highly dependent on relatively rare events of
sustained growth represented by the spikes on the top right quadrant of the transition matrix. The companion
Figure 13, computed at the submarket level enables us to disentangle growth autocorrelation in terms of single
markets dynamics.

Two different regimes are clearly distinguishable. The products that at time ¢ — 1 experienced a growth
above the average are sharply divided into two groups: some of them keep their growth pace unchanged, while
most of them subsequently drop on the mean. Conversely, the mean growth level represents an absorptive
state for slow (below the mean) growing products too, but the phase transition is considerably smoother.

New products bust into the market and growth swiftly for a short period of time, then a cluster of analogue
drugs enter (and possibly licensing begins, too). As a result, innovative drugs growth slows down. After a
while, all incumbents tend to growth approximately at the same rate, even if with highly asymmetric shares,
in favor of the early movers.

A tangled and “classic” question concerns the possible dependence of the distributions the growth rates
on the initial firm size. The answer, of course, is not exhausted by the above (negative) finding on correlation
measures between growth and size. While the existence of correlation in a Gibrat-type test between growth and
size would be sufficient to reveal dependence, the converse does not hold: dependence might just show up at
higher moments of the conditional distributions. In Figure 14 we plot the moments of the growth distribution
for different size classes built considering, at each time step, all the firms with size in a given range.

In line with a few contributions in the literature??, as Figure 14 shows, no dependence of mean growth
appears, and neither does dependence in autocorrelation. However a clear pattern emerges concerning the
variance of growth rates, decreasing with increasing size. Fitting the relation between growth variance and
size with an exponential law

o(h) ~ €’ 9)
we obtain a value 8 ~ .2+0.02 which is striking similar to the one found in other analyses on different datasets
(cf. Stanley et al., 1996, Lee et al., 1998).

22¢f. Boeri, 1989a; Evans, 1987; Geroski, 1999; Hall, 1987; Hymer, Pashigian, 1962; Mansfield, 1962; Sutton, 1997 among
others.
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Figure 14: Mean, standard deviation and autocorrelation of growth h computed for different size bins plotted
againts the average size in the bin. The exponential fit to the standard deviation (see (9)) gives a value
8 =-0.20+/-0.03

To further investigate the relation between size and growth we look at the dynamics of firms across ranks.
One can then plot the frequency at which a given rank is crossed during the observed period. Take the two
dimensional plane having time as x coordinate and log sizes as y coordinate. Think of the growth of a given
firm as a continuous line in this plane with equation y = g;(t) (of course due to the data grid resolution, one
can actually plot only a piecewise straight line). A given rank is then crossed when the lines pertaining to the
firm associated to this rank meet another line. We record at each time step which ranks has been crossed, i.e.
which rank was associated to firms that have met other firms since the last period, and then calculate the new
ranking for all firms. In such a way is possible to obtain a statistic on how often a given rank is crossed during
the growth process, i.e. the probability of crossing for this rank. Such probabilities are plotted in Figure 15
(they are grossly discretized because the time series used in the calculation contains only eleven time steps,
so that only a rough analysis is possible). A first noticeable effect is that the “rank mobility” increase with
rank until 50-60, then becomes stationary (this is approximately the minimum point between the two maxima
in the size distribution, cf. Figure 6). Moreover, one observes the presence of a sort of “barrier” between the
20-25 positions which is seldom crossed. This is due to the presence in the size distribution of a large size gap
(cf. Figure 5) and to the low variance of the growth rates for bigger firms. This “barrier”, together with the
change of “Pareto regime” discussed earlier, further reinforces the notion of a sort of separation between the
“oligopolistic core” and the rest of the firms in the sample.

3.3 Diversification across sub-markets and Gibrat violations

One of the peculiar feature of the PHID database is the possibility of disaggregate sales until the 4-th digit
of the ATC code. This level of disaggregation allows us to identify sub-markets that are “specific” enough to
be considered the loci of competition among firms. In this section we focus on the relationship between the
variance of growth and size.

If one assumes that firms are collections of independent elementary lines of business, roughly of the same
size, whose number is proportional to the overall size of the firm, then the Law of Large Numbers predicts
a relation between variance of aggregate growth and firm size of the form var(h) ~ g°®°. However, both the
existing literature and our data (see Figure 14), show a lower exponent.

In the literature, this departure from the predictions of the Law of Large Numbers is typically imputed to
some interrelation between firm components?? (cf. Boeri, 1989; Stanley et al., 1996).

23Note that imposing a simple correlation in components growth is not enough to explain the low value of .
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Figure 15: Probability of rank crossing. The smoothing approximations are performed using spline with
different windows

In principle, one could relax the assumption of elementary components and measure the real relationship
between aggregate firm size and the number and size of its lines of business.

In fact, our analysis shows that the Law of Large Numbers can explain the observed relationship between
size and variance of growth if one consider as elementary lines of business the sales of firms in the different
submarkets. This result comes from two observations: first, correlation across sub-market is negligible and
second, the number of active sub-markets of a given firm is, on average, increasing with size.

To make the argument clear, let us introduce a bit of notation. S; ;(¢) is the size of firm ¢ in sub-market j
at time ¢, and S;(t) = 3_; S ;(t) its total size. The aggregate growth of each firm can be written as

Sit+1) = Si(t+1)
SO X Sm 10

If one computes the correlation of S; ;(t + 1)/S;(¢) for all firms in all submarkets, one obtains a distribu-
tion sharply centered around zero?*. For any practical purpose, the growth on different sub-markets can be
considered uncorrelated and the variance of the aggregate growth is the sum of the variances of growth in each
sub-market.

Deﬁning Rz',j (t) = Si,j(t + 1)/Si7j(t) and AiJ(t) = Ni(t) S,,J(t)/Sz(t) where Nz(t) is the number of sub-

markets in which firm 4 operates at time ¢ (active sub-markets), the variance of the growth of the “normalized”
size G becomes

; 1 M A
var; ¢[H;(t)] = var;; [%] = Zj:vari,t [Wi)l)&,j(t)#g) (11)
where M (t) is the average (aggregate) size of firm at time ¢ and the ratio M (¢)/M (t + 1) is a normalization
factor (proportional to the rate of growth of the total industry). Here var;; denotes the variance of the
distribution obtained using the complete panel (all firms at all time steps).

In Eq. (11) the contribution of each submarket factorizes in three terms: R; ;(t), that is the actual growth
of the firm ¢ in sub-market j; the inverse number of active markets 1/N;(t) and A; ;(¢)/N;(t), the weighting
coefficient describing the “diversification asymmetry” of firm 42> The mean and variance of the distribution
of R; ;(t) and A; ;(t) obtained using different size bins do not show any clear dependence on the average size

24With a standard deviation of .388 10~ % and an average deviation of .24 10~

251f the firm i at time ¢ is symmetrically diversified over its active submarkets, the distribution of A; ;(t) in j is centered around
1, otherwise it is broadly distributed.
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Figure 16: Number of submarkets a firm operates in vs. firm’s size (log-log scale)

of the bins. Then the number of active submarkets N;(¢) must be responsible for the observed dependence of
variance over the aggregate size. Fitting on a log-log scale the average number of active submarkets for each
bin against the average size of the bin one obtains a slope a = .39 + .02 and an intercept ¢ = 6 + —.12 (see
Figure 16). The Law of Large Numbers would predict a relation between the exponent in 9 and the slope in
Figure 16 of the form 8 = —a/2 which is in perfect agreement?.

In conclusion, the relation provided by the Law of Large Numbers is valid as long as one considers the
actual number of sub-markets a firm operates in. In order to demonstrate this statement, it has been necessary
to rule out two possible sources of functional dependence between aggregate growth variance and size: first,
the possibility that the variance and mean of a firm growth in a sub-markets depends (on average) on its total
size and, second, the possibility that the diversification pattern of a firm varies (on average) with its size. Both
these possibilities are actually discussed in the literature as possible sources of violation to the Gibrat law (see
for instance Hart, Prais, 1956).

3.4 Innovation and growth

A major tenet of evolutionary interpretation of industrial dynamics is indeed the general conjecture that
the process of technological innovation and imitation are a major driver of industrial dynamics and also of
the competitive fate of industrial firms. How does our evidence bear on this proposition? Let us beginning
by considering the process of introduction of innovative drugs, both New Chemical Entities and patented
products®’, in the US market. Consider first the distribution of NCE launches over the population of firms
throughout the 11 years of observation (1987-97). Indeed, the number of NCEs that a firm introduces over
a given period may be understood as one proxy for its “degree of innovativeness”, and as such contribute to
detect possible underlying forms of heterogeneity across firms in their ability to innovate.

As a benchmark, let us model what would happen with “technologically homogeneous” firms. In these
circumstances, as a first approximation, one may consider the arrival of different NCEs as independent, events.

This means that given a set of N NCEs introduced by population of F' firms, the probability to find a firm
who introduced exactly ¥ NCEs is given by the binomial distribution:

pm.B.(F) = (],Z) (%)k (1 - %)N_k : (12)

26Notice that there is a weak relationship between the variance of A; j(t) and the aggregate size. A linear fit provides a slope
of .09 that is negligible compared to the effect of the number of active submarkets.
2"Note that the former are a small subset of the latter.
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Tot
4 6 & 73
3 2 1 57

NCE 0 1 2 3
firms 26 13 8 4

Table 6: Number of firms that introduce a given number of NCEs.
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Figure 17: The frequencies of total NCE intro-
duced over the firms population. Figure 18: Average (rescaled) sales per firm for
each “innovative propensity” group.

This model is known as Maxwell-Boltzmann statistics (Feller, 1968). However as shown in Fig.17 it is a
poor description of the observed frequencies (cf. Tab.6).

Indeed the assumption of random independent assignment is at odds with the qualitative evidence on whole
families of research projects conducted by each firm over several years, often entailing knowledge spill-overs
across them. Hence, one may conjecture some correlation amongst arrivals of NCE due to learning effects
across individual research projects. In order to empirically check this hypothesis one ought to check whether
the random assignments of innovations to individual firms concern indeed “packets” of NCEs rather then single
products. Under the assumption of equiprobability of the packet sizes the appropriate statistics, known in
physics as the Bose-Einstein statistics (Reichl 1980) consider the the probability to find a firm who introduced
exactly k NCE:

(V)
PRE.(F) = —Frr oy - (13)
(Qyary

As can be seen from Fig. 17 the previous distribution provides an excellent description for low to average
NCE numbers and only fails for the very large assignments. It is also interesting to notice that the propensity
to introduce NCE is not monotonic in the size of the innovative firms themselves (so that for example the
upper tail in the distribution in Fig. 17 does not feature the biggest firms in the industry). This evidence,
taken together with the observation that R&D expenditures do shows indeed a monotonically growing relation
with size, hints of some underlying forms of heterogeneity in search competences and/or search orientation
(e.g. biased in favor or against the quest for relatively major innovations).

Conversely, when considering the distribution of NCEs across all firms in our sample independently from
their size, as we do in Fig. 17, one does not need to invoke any further factor of heterogeneity in order to
interpret the observed innovative patterns, except maybe for the few firms displaying the highest innovative
intensity?®. Together the widespread occurrence of “clustering” in the arrivals of NCEs suggest the importance
of firm-specific learning effects across different research projects.

Given the foregoing evidence a crucial quantity concerns if (and how much) the introduction of NCE during
a firm history does affect its growth performance. Firms sizes are computed as aggregate sales and growth
performances are measured as variations in market shares. One can start by partitioning the set of firms
based on the number of NCEs they have introduced during the time window of observation. Fig. 18 shows the
average firm shares for three such subsets. Clearly appears a relation between the number of NCEs introduced
and the size, with bigger firm introducing “on average” more NCEs, but no relation is apparent between the

28Note however that this statements concerns in any case the top tail of the distribution of firms in US market, in term of sales
and generation of innovation. Deeper competence-related sources of heterogeneity might well apply when comparing our sample
with the rest of the firms in the industry.
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Figure 19: The frequency of different values of Figure 20: Average (rescaled) sales per firm rela-
I on the firms population. A log scale has been tive to each [ bin computed for the different years.

introduced on the y-axis.

number of NCEs and firm performances: indeed more “innovative” firms do not seem to gain, on average,
market share with respect to less “innovative” firms.

As already mentioned, the rates of arrival of NCEs are very low. Conversely, all firms introduce much more
frequently patented innovations which more often do not involve NCE but e.g. “creative analogues”, new ways
of combining already existing NCEs, etc. Let us define [;(¢) as the share of patented products present at time
t in the total products portfolio of firm ¢. This can be taken as another broader proxy for the innovative
capability of firm i. As shown in Fig. 19, note that the distribution of patent intensity on the population of
firms is very heterogeneous, with the vast majority of firms possessing a very low /. Moreover, unlike the case
of NCEs, a systematic relation appears between | and size with, interestingly, bigger firms displaying low to
average values of [ and many relatively small ones with values near unity. Finally, in terms of growth profile,
again, no systematic relation appears between the structure of product portfolios and growth performance
(cf. also Fig. 20). Rather, all the foregoing evidences suggest that firms embody rather idiosyncratic bundles
of products, characterized by varying degrees of innovativeness, without however systematic effects of the
“technological ID” of the firm itself upon its global growth performances. However, all this does not imply
homogeneous market dynamics of the three groups of products (NCEs, patented drugs and no patented ones)
in the 4-digit submarkets in which they compete.

Let us consider S; ; , the sales of the product £ of firm 4 in submarket j and define the “normalized” sales
with respect to all other products in the same 4-digit submarket as

Sijk

G = —2ibk
bl < Sijk >ik

(14)

Fig. 21 reports the mean and variance of G; ; for three categories of products (i.e. NCEs, patented
products and all others) as a function of the time elapsed since their introduction (so that on the x-axis one
reads the “market age” of each product).

Note, first, the pronounced “market cycle” of NCEs which tend to “hit the market big” and decline relatively
soon, thereafter with a burst in the variance (intuitively, a burst in the competition with the ensuing high
turbulence in market shares) early in their life cycle. Interestingly, qualitative inspection of the big growth
shocks described in section 3.2 reveals that they corresponds to a good extent to the introduction of NCEs.
The much more numerous family of patented drugs follows, on average, a “market cycle” loosely similar to
NCE but much less pronounced in both their changes in means and variances. Finally, non-patented drugs
appears to occupy from the start their long term market position (plausibly at the expense of patented ones
in general and NCE in particular).

In all that, innovation does indeed drive the evolution of each submarkets, but the competitive regime
is not such as to guarantee a sustained competitive advantage to the individual innovators either in the
affected submarkets or, even less so, for the firms as a whole. Rather, one may think to some analogue to
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Figure 21: The mean (left) and variance (right) of the (rescaled) sales for the three groups of products computed
for different “market ages”. At any given time we take into consideration only submarkets with at least 10
products. The product sales are rescaled by the average sales of the submarket where the product is launched.

population-level mixed-strategy equilibria (here, populations of innovative vs. imitative and “old” products)
which persistently coexists between submarkets and between firms.

4 Conclusions and conjectural implications for the theory

In this work we have tried to explore the statistical properties of growth dynamics in an industry — pharma-
ceuticals — whose long-term evolution is fueled by innovation, imitation and creation of new markets. The
fundamental features of such evolutionary patterns, sketched out in the first part of this work, have proved
to be also a fruitful heuristic guide in the interpretation of the statistical regularities identified in the second
part of the analysis. There — as well as in several studies of this genre — the benchmark of departure has
been the so-called Gibrat Law. However, such a “law”, as Brock (1999) emphasizes, “is useful as a rough
approximation to the unconditional distribution of rates of growth of firm sizes, which is especially pertinent
to illustrating the degree of accuracy of the “Law of Proportionate Growth”; [however] it has poor power
to discriminate across different plausible stochastic processes that might fit the stochastic dynamics of firm
growth” (p. 432). Our data, breaking down firms dynamics over highly disaggregated product markets, as
well as complementary pieces of evidence on innovation and competitive patterns, allows to discriminate the
finer structure of the growth processes and their links with size distributions.

The evidence show, together, a) a “double-humped” size distribution, stable over the observation period,
with its upper tail corresponding to a sort of oligopolistic core of the industry; b) fat tails in the distribution of
growth shocks, present at all levels of aggregation, with (relatively rare) big “spurs of growth”; c) a significant
autocorrelation in growth rates, again at all aggregation levels; d) a fall of the variance of growth rate with size
(in line with previous findings) which, at closer inspection, is entirely dependent on diversification patterns,
in turn plausibly shaped by the “competence scope” of each firm.

Our results, on the negative side, allow us to rule out some interpretations of the growth processes as
seemingly in conflict with the evidence. For example, the fat-tailed growth distribution and its departure from
a Gaussian even in its central part is at odds with a “pure Gibrat process” purportedly driven by the sum
of independent events. In this respect note that if Gibrat dynamics were a strict description of the process
this should apply to all time scales (e.g. on monthly or weekly bases, etc.). But then, pushing the reasoning
to the extreme, “years” should display a much more Gaussian profile — for the Central Limit Theorem —
irrespectively of the original distribution of events.

On the positive side, our evidence, first, is well in tune with the conjecture (Geroski, 1999) that the time
scale of arrival of “big” growth impulses associated with the arrival of major innovations — i.e., in the case of
pharmaceuticals, New Chemical Entities — is different from the scale on which corporate growth is measured
(i.e. accounting years). Indeed, such shocks are quite rare, are persistently generated by a relatively small
club of innovators, but any one innovator is unlikely to hit the same market twice. Rather, NCEs often create
new markets.

Hence, the overall, industry-wide, growth dynamics is likely to be the mixing of two different underlying
evolutionary processes. The first, driven by major, rather rare, innovations entails the generation of new
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market niches (new therapeutic targets, etc.). The second (“faster”) process is associated with imitation,
development of analogue drugs, incremental therapeutic improvements, etc., and drives the competition process
within already existing markets. The two processes, we suggest, approximately map also into a persistent
heterogeneity — in terms of organizational competencies and competitive strategies — between, first, what
we called the oligopolistic core, and, second the rest of incumbents.

Further corroborations of this interpretation will involve also conditioning the observed dynamics upon
explicit proxies for the technological characteristics of firms and upon the “stages” of market development.
We would like to consider this work just as an initial exploration of links between some basic features of
industrial evolution — so far empirically analyzed in largely qualitative manners — on the one hand, and
“emergent” statistical properties of industrial structures and growth dynamics, on the other.
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