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Abstract

To explain the dynamics of technological transitions, we develop an agent based
model based on network externalities and two different types of innovations. Re-
combinatorial innovations create short-cuts which speed up technological progress,
allowing transitions that are impossible with only branching innovations. Our
model replicates some stylized facts of technological transitions, such as punctu-
ated equilibria, path dependency and technological lock-in. We find analytically a
critical mass of innovators for successful innovations and technological transitions.
Recombinant innovation counters network externalities, and calls for technologi-
cal diversity as a key feature of technological transitions. An extensive simulation
experiment shows that stronger network externalities are responsible for S-shaped
utility and technological quality curves, indicating that a threshold of innovation
probability is necessary to boost innovation. We finally introduce a policy view
and interpret the innovation probability as the effort to foster technological change.
A welfare measure including innovation costs presents an optimal interior value
of innovation effort. The optimal innovation effort is strongly correlated with the
number of recombinations, which further indicates how recombinant innovation is
important in achieving a sustained technological progress at relatively low costs.

1 Introduction

Among the most challenging questions in the social sciences is the question how one can explain
societal transitions. Transitions range from transitions in norms, in opinions, in preferences,
and in technology use. It is the latter case we will refer to in the following though we feel that
some elements of the model developed below may be more generally applicable.

We characterise transitions as large-scale changes that occur suddenly yet endogenously.
This means that the time-scale at which a transition takes place in a particular context is
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considerably smaller than the time-scale at which transitions do not take place in that context.
It also implies that we do not invoke an external cause (shock) to explain transitions.

To explain the dynamics of technological transitions, we develop a model where agents en-
joy positive network externalities from using the same technology, while some agents, called
entrepreneurs, ignore these externalities and introduce new technologies. Models of path de-
pendence (David, 1985; Arthur, 1989) only explains how a technology becomes dominant in a
population, and do not explain the emergence of new technological paths. The call for models
that combine path creation and path dependence is legitimate, as they are fundamental aspects
of transitions to sustainable technologies.

We assume that technologies form a graph (Vega-Redondo, 1994; Carayol and Dalle, 2007)
which is evolving because entrepreneurs create new nodes. Remaining agents make decisions
about technology and only adopt a new technology if it gives higher returns net of the switching
costs. A specific feature in our model, under-explored so far, holds that technologies can be
recombined (van den Bergh, 2008; van den Bergh and Zeppini-Rossi, 2008). Re-combinatorial
innovations create short-cuts which speed up technological progress, allowing transitions that
are impossible otherwise. Recombination short-cuts operate kind of re-wiring in the graph
similar to “small world” networks (Watts and Strogatz, 1998), but in a dynamic environment.

Our model replicates some stylized facts of technological transitions, such as punctuated
equilibria, path dependency and technological lock-in. A theoretical analysis shows that en-
trepreneurs can always break a technological lock-in, though the time required rises exponen-
tially with the population size (Bruckner et al., 1996). We find analytically a critical mass of
innovators for successful innovations and technological transitions. The model also account for
potentially good innovations that became unsuccessful only because of network externalities.
Recombinant innovation counters network externalities, and calls for technological diversity as
a key feature of technological transitions.

An extensive simulation experiment gives the following results. When the population size is
small and network externalities are weak, the mean utility and minimum quality of technologies
are increasing in the probability of innovation, with a saturation effect at large values. Stronger
network externalities make utility and quality curves S-shaped, indicating that a threshold of
innovation probability is necessary to boost innovation. When strong externalities are accom-
panied by a large population size, a local minimum of utility appears at low values of the
probability of innovation, indicating an initial detrimental effect of innovation.

We finally introduce a policy view and interpret the innovation probability as the effort to
foster technological change. A welfare measure including innovation costs presents an optimal
interior value of innovation effort, which follows from the S-shape of the utility and indicates that
neither too low or too high efforts are advisable for innovation policy. The optimal innovation
effort is strongly correlated with the number of recombinations, which further indicates how
recombinant innovation is important in achieving a sustained technological progress at relatively
low costs.

The paper is organised as follows. Section 2 presents the model and contains an analytic
study of its properties. Section 3 contains some simulation examples and the numerical analysis
of an extensive simulation experiment. Section 4 concludes, also indicating the direction for
possible extensions of the model.

2 Our model

Here we present formally our agent based model of technological innovations. For a more
detailed description of the model refer to appendix A. Let there be a population of N agents
(N ≥ 2), which in every period face a decision about which technology to adopt. Technologies
belong to an expanding set, which is built by agents themselves through an innovation process.
Given the technology set At of period t, agents decide based on a utility uα,t, where α ∈ At
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indicates the technology adopted. The utility from using technology α comes from an intrinsic
quality lα and from the positive externalities that other users of α exercise on the single agent:

uα,t = lα + enα,t (1)

where the parameter e ∈ [0, 1] measures the strength of network externalities, while nα,t indi-
cates the number of agents using α in period t. Technologies form a directed graph of which they
represent the nodes, while the links express the generational relation. The graph evolves, due to
the action of agents, which is either a technology adoption or an innovation. Adoption decisions
determine the population size of each technology, or node in the graph. Innovation by an agent
generates a new technology, and then a new node and at least one new link. We can assume
without any loss of generality that in the beginning only one technology is available. If only
branching is possible, this is obvious, because each starting technology evolves independently.
If recombinant innovation is possible, the initial condition where more technology are present
can always be replicated by starting with only one technology, if one can wait long enough.
This has to do with the ergodicity of the model with recombinant innovation, an issue that we
will address later in the paper.

2.1 Adoption decision

In every period t an agent may be drawn as innovator with some probability p. If an agent
is not innovator it evaluates and compare the utility from adopting each available technology
in the set At. All non-innovator agents decide synchronously which technology to adopt. The
decision is actually about whether to stay with the actual technology or to switch to the more
attractive among other technologies. Such decision involves a third factor, the switching cost,
which we assume equal to the geodesic technological distance between the used and the new
technology. For instance, switching from technology α to technology β takes place as soon as
the following condition realizes:

uβ,t − dαβ > uα,t (2)

Let all technologies be part of a connected graph with the technological distance between α and β

given by the geodesic distance dαβ (with dαα = 0). We assume that this quantity also represents
the switching costs from one to the other technology. If the difference ∆uαβ = uβ,t−uα,t−dαβ is
positive, agents will migrate from α to β. in case of ∆uαβ = 0, the old technology is mantained.
Since more than two technologies are present in the network in general, agents search for the
best one. If two technologies β and γ present the same benefits from switching, that is if
∆uαβ = ∆uαγ , a random decision is taken. In the following we assume that switching costs for
adjacent technologies are constant in time and the same for all technologies.

2.2 Innovation

Technological opportunities change through time, innovation being possible. In each period any
agent can innovate with probability p, introducing a new technology that represents a quality
improvement with respect to the technology previously used. For simplicity we assume that
quality improvements are always equal to one. There are two channels of innovation: branching
and recombination. In the first case, one or more agents from the same technology innovate
creating a new technology that “branches” from the old one. In the second case, at least
two agents from two different technologies join to create the recombinant innovation. In the
technology graph a recombinant technology has at least two incoming links from different parent
technologies, while with branching the incoming link is always one (figure 1).

In the case of branching the improvement is a unitary step up over the parent technology.
If β is an innovation that branches from technology α, we have:

lβ = lα + 1 branching (3)
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Figure 1: Intuitive representation of innovation events in one period: branching (left) and
recombinant innovation (right).

When recombinant innovation arises, the quality of the innovation is assumed to be a unit
higher than the maximum quality of recombinant technologies. If α and γ recombine to give
the innovative technology β, we write:

lβ = max{lα, lγ , . . . } + 1 recombination (4)

In general, if m technologies recombine the quality of the innovation will be one unit higher than
the quality of the best among these m technologies1 . By assumption the innovator agents stick
to their new born technology at least for one period. The model with or without recombinant
innovation present some sharp difference, which suggest to address them separately. This is
what we do in the next two sections.

2.3 Branching innovations

This specification of the model is more suited to describe linear technological progress. Tech-
nological quality improvement are always unitary for all technologies. Innovations can only
have one parent technology and the technological graph appears as a star, with a number of
branches that reaches the total size of the population in the long run. When this attracting
state is reached, the technological variety does not change anymore. In other words, the model
evolves towards a situation where alternative technologies branch out, each one being carried
on by a single agent. Figure 2 reports an example of a simulation run of the model2. In this
example we have 5 agents, we set e = 0.1 (externalities) and p = 0.1 (probability of innovation),
and we let the model run for T = 50 periods. The graphic representation of the simulated model
shown by figure 2 contains information about the number of technologies invented (we start we

1The above assumption is critical and debatable: it can also be possible that parent technologies with
lower quality act as “bottlenecks” and keep low the quality of the recombinant innovation. This issue
raises a more fundamental question about the nature of recombinant innovation. Parent technologies
should have a certain degree of complementarity in order to recombine. If the parent technologies become
the modules of the recombinant innovation as a complex system, the quality of this new technology is
likely to be a sort of average of the quality levels of parent technologies. The difficulty of finding a
suitable specification for the dynamics of technological progress of recombinant innovation also comes
from the low dimensionality of quality: using one scalar parameter to describe performance is probably
oversimplifying. It applies quite well to incremental innovation and to the schematization of branching,
where the innovative technologies performs the same task of the old ones. It is maybe too restrictive
for recombinant innovation, where the different parents are not necessarily substitute technologies, and
then the idea of quality improvement needs to be extended.

2The model has been implemented in NetLogo
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Figure 2: Example of simulation of the model with only branching. Here we have N = 5
agents, e = 0.1, p = 0.1 and the time horizon is T = 50. The numbers in the balls represent
the population size of that technology.

just one technology), how many agents are in each technology (numeric label of the balls) and
the quality level of each technology (colour of the balls). Moreover the representation show the
directed links that connect technologies and that tell the genealogy of the final configuration. In
the example of figure 2 we have five branching events, three stemming from one technology and
two from another one. One agent inhabits the latest technology of each branch. In three cases
the branch reaches the maximum quality of the system, namely level six (the initial technology
has level zero). Another branch stops at level five, while the last one only reaches level four.

The system of technologies where branching is the only channel of innovation is non-ergodic.
Once branches are formed, each with one agent, the total utility (or welfare) increases in a
deterministic fashion, at a rate that depends on p.

In the following we derive some analytical properties for the branching model. We start
with asking the following question: for what population size of the parent technology is an
innovation always successful? With successful innovation we mean an innovation that is capable
of attracting another agent and do not loses its innovator. Assume we are in the initial stage,
with only technology α, and assume only one agent innovates producing technology β . The
condition for successful innovation is that utility from switching to it is larger than utility from
staying in the old technology, net of switching costs dαβ that we normalize to one:

lα + 1 + enβ,t=1 − 1 > lα + enα,t=1

In the left hand side the increase in quality and the switching cost offset each other. Considering
that we are in the initial stage and only one agent is innovator, we have nβ,t=1 = 1 and
nα,t=1 = N − 1, which gives the condition

N < 2 (5)

If we are considering a generic time t, and α is not the initial technology, we assume that M

agents are occupying other technologies, so that nα,t=1 = N − M − 1, and the condition for
successful innovation becomes

N < 2 + M (6)

One important remark: agents are myopic, in that they do not consider their own positive
contribution to the utility. Moreover, they are not strategic, missing to take into account the
contribution of other agents’ actions. Based on these assumptions, when we write conditions
for agents action we always assume the point of view of one single agent that computes utility
as if all other agents do not switch.
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Conditions (5) and (6) tell that a larger population of agents makes successful innovation
more difficult, due to network externalities. Condition (6) tells also that a more diversified
system gives a higher probability of successful innovations, because each technology is less pop-
ulated. These two conditions are quite stringent. But by no means they rule out the possibility
of successful branching, in the sense that it is still possible to escape the starting technology
(escape lock-in) even when they are not met. What we need is two successive innovations. This
consideration introduces the following question: what geodesic distance needs to be covered
with successive innovations within a branch, in order to have a successful innovation? In other
words, how many successive innovations make a successful branching event, where an agent
(we consider a single innovator) leaves the original technology permanently? We address such
question writing down the condition for which it is not profitable for the innovator to go back
from its last invented technology β (the frontier technology) to the original technology α:

uβ ≥ uα − d∗αβ (7)

where d∗αβ expresses the total technological distance from α to β. If technological recombination
is impossible, this is equal to the difference in qualities levels d∗αβ = lβ − lα. With only one
innovator in β and a generic number nα,t of agents in α, inequality (7) becomes

lβ + e ≥ lα + enα,t − (lβ − lα) (8)

which can be rearranged in the following condition:

lβ − lα ≥
enα,t − 1

2
(9)

Condition (9) says that stronger network externalities and larger population sizes ask for bigger
improvements in technological quality, in order for branching innovation events to be successful.
If we have a generic number of innovators mβ,t, the condition can be easily generalized by
substituting enα,t − 1 with e(nα,t − mβ,t) in the numerator of (9).

We now ask a slightly different question: how many agents have to “co-invent” for the
others to follow suit? Let consider a generic time t, with n agents in technology α, and assume
that m agents co-invent technology β in that period. Assume that no other innovation events
characterize technologies α and β in periods t and t+1. The m inventors stick to the innovation
in period t+1 by assumption. Two cases are possible: 1a) also the other n−m agents follow suit
and adopt technology β, or 1b) the other n−m agents stay with the old technology α and the m

innovators can do one of the two following actions: 2a) they decide to remain with technology
β, or 2b) they go back to technology α. Case (1a) represents a transition, with an increase in
the minimum quality level of all used technologies. If this case occurs in period t + 1, it lasts
also in the following period, and only another innovation event can change the population of
technology β. Case (2a) represents a branching event, of which the transition event (1a) is a
particular case. Case (2b) refers to an unsuccessful innovation, which we will refer to as lock-in,
while cases (1a) and (2a) are successful. Figure 3 depicts the possible cases.

In what follows we derive mathematical conditions for cases (1a) and (2a). The case (2b) is
complementary to (2a). The condition for a transition (case 1a) is the following:

lα + 1 + em − 1 ≥ lα + e(n − m) ⇒ m ≥
n

2
(10)

If more than half of the agents with technology α are selected to be innovators in period t,
all other agents will follow, and a technological transition realizes. The threshold (10) only
depends on the population size n, and not on the intensity of externalities e. This is because a
transition requires that at least half the population of a technology co-invent, and if this is the
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Figure 3: Possible cases of branching innovation by m co-innovators, starting from a technology
α with n agents at a generic time t.

case, weak or strong externalities do not make a difference. If we have less innovators instead,
a branching event is still possible, with case (2a). The condition is:

lα + 1 + em ≥ lα + e(n − m) − 1 ⇒ m ≥
n

2
−

1

e
(11)

This condition is obtained by requiring that the innovators do not go back to the old technology
α at time t + 2. Figure 4 summarizes the different cases and relative threshold values for the
number of co-innovators m. Because of condition (11), the stronger network externalities e are,
the higher is the threshold level of co-innovator for escaping lock in. At the macro level the

Figure 4: Summary of conditions on the number m of co-innovators for a transition, and/or for
a branching event, starting from a technology α with n agents at a generic time t.

properties outlined above determine the following features of the model. First of all, once a
transition occurs, the minimum quality does not step back. Total utility can go down instead,
because innovators give up in terms of network externalities. The non-negative (although not
deterministic) rate of increase of quality is behind the non-negative rate of the total number
of technologies in use. But by no means the entropy of the system always increase. Entropy
may decrease in some case, if agents happen to reorganize in a way that more of them use the
same technology. A last feature of the model with only branching is that agents never adopt an
unused technology. This is not the case when recombinant innovation is possible.

2.4 Branching and recombinant innovations

With recombinant innovation being possible, two or more different technologies can be the
parents of a new one if at least one agent from each of these technologies is drawn as an
innovator. Branching is still possible, if only one agent is drawn as innovator in one period.
By assumption, multiple innovators in a same period always recombine.3 The connectivity of
the resulting technology graph is higher than the case with only branching. Figure 5 reports

3An extension of the present model, called “Partitioning model” considers all possible cases with
multiple innovators in a same technology.
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an example of simulation run in the same condition as figure 2, but with recombination being
possible. From this example we see already by visual inspection a first virtue of recombinant

Figure 5: Example of simulation of the model with branching and recombinant innovation.
Here we have N = 5 agents, e = 0.1, p = 0.1 and the time horizon is T = 50. The numbers in
the balls represent the population size of that technology.

innovation, which is the possibility of “short-cuts” to higher quality technologies: agents that
recombine will profit from the other parent technology and make a jump in quality larger
than one. This is the case of one of the two agents that inhabit one of the two highest level
technology in the example: such agent had to make only six instead of seven steps to get there.
The short-cut property translates into a higher rate of increase in minimum quality of the overall
technology graph, and consequently in a higher probability of technological transitions.

There is an important and fundamental difference between the model with and without
recombinant innovation. We have seen that if branching is the only channel of innovation, the
technology graph reaches an attractor represented by a state with as many branches as agents,
and the system is non-ergodic. The system with recombinant innovation is ergodic instead:
with positive probability is reaches the state where all agents use the same technology. The
quality of such technology is higher than the starting technology, but the state variable is the
same (technology adoption shares, where one technology has share equal to one). We will cal
this state the recurring state. This state will be reached surely in a finite time. After this time,
everything goes as if one starts the model again, only with a different initial quality. Only quality
tells that there was a progress, but the recurring state at different times is indistinguishable.

The probability of recombinant innovation is the joint probability that two or more agents are
drawn to be innovators minus the probability that these agents are using the same technology.
Disregarding the negative contribution of this second term, we may affirm that the probability
of recombinant innovation of m technologies is proportional to pm. This tells that recombinant
innovations that involve more technologies are less likely.

The probability of having a recombinant innovation with any number of parent technologies
is positively affected by the following factors: the number of agents n, the number of used
technologies, the entropy of the system. The positive effect of entropy is due to the fact that more
balanced distributions of agents across technologies give a higher probability of recombination.
In other words, the marginal effect of taking an agent from a crowded technology and giving
him a new technology is positive (Van den Bergh and Zeppini-Rossi 2008).
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3 Numerical analysis

3.1 Simulation examples

Our model is actually a model of economic growth, which includes technological transitions. An
implicit aspect of technological transitions is the positive rate of change in quality and mean
utility of agents. With technological transtition we mean a positive increase in the minimum
quality level of used technologies. A central role in our model is the probability of innovation
p. Network externalities e and agents population size N may be seen as given parameters
that characterize the social system. But p is a parameter open to policy intervention, through
government investments aimed at fostering research and development, for instance. In order
to give a flavour of the role played by the probability of innovation p in the model we run
four simulation examples for four different values of this parameter. Il all these examples we
consider N = 50 agents, with a magnitude of network externalities equal to e = 0.5. We
run the simulations for 50 periods. In the first example we set p = 0.1 (figure 6): the visual

Figure 6: Simulation run with p = 0.1 (N = 50, e = 0.5 and T = 50 periods). Left: technology
graph. Right: Minimum quality level of used technologies (red line), maximum level (blue line)
and mean level (black line).

representation of the technology graph shows that 42 agents remain in the initial technology
and 8 agents are in a technology with higher quality. Actually this configuration gives an
illusion, because these agents are going to go back in the lower level technology in next periods
(unless they are again drawn as innovators). This is because the population size is too large
the network externalities too strong and the switching costs too low for innovative agents to
remain in better technologies. This fact explains why the maximum level of used technologies
presents many positive swings, while the minimum level stays at zero (right part of figure 6).
We may say that in this setting we have no technological transitions and zero growth. The
next example has p = 0.2. In this case we have three transitions, as the three steps of the
minimum quality shows in the right part of figure 7. The three transitions reflect in the cluster
structure of the technology graph in the left part of the figure. We have four clusters in the 50
periods of this simulation run: one builds around the initial technology. A second one stems
from an innovation that was successful initially, but eventually was left by all agents. A third
cluster is successful instead, in the sense that lately gives place to a new cluster, thanks to the
fact that the innovative technology is able to attract all agents in the population. Here we see
what we analyze theoretically in section 2.3: a critical size of followers is necessary to make
an innovation successful. Increasing further the probability of innovation we obtain even more
transitions with faster growth. Figure 8 reports an example with p = 0.3, while figure 9 has
p = 0.5. In both examples the maximum level of quality increases continuously, indicating
that in this setting p = 0.3 was enough to ensure a successful innovation in every time step.
The variability of the system decreases substantially, and the model acquires more and more a
deterministic character. The technology graph on its turn assumes the form of a chain, with
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Figure 7: Simulation run with p = 0.2 (N = 50, e = 0.5 and T = 50 periods). Left: technology
graph. Right: Minimum quality level of used technologies (red line), maximum level (blue line)
and mean level (black line).

Figure 8: Simulation run with p = 0.3 (N = 50, e = 0.5 and T = 50 periods). Left: technology
graph. Right: Minimum quality level of used technologies (red line), maximum level (blue line)
and mean level (black line).

Figure 9: Simulation run with p = 0.5 (N = 50, e = 0.5 and T = 50 periods). Left: technology
graph. Right: Minimum quality level of used technologies (red line), maximum level (blue line)
and mean level (black line).

little space for clustering.

3.2 A simulation experiment

In this final section we report the analysis of a systematic simulation experiment, that aims
at unveiling the effect of the innovation probability p on the model, in different conditions
of agents population, namely its size N and the network decision externalities e. In such
simulation experiment we considered a time horizon of 50 steps, and averaged results over 10
repetitions. We then analyze simulation results by looking at four variables: the minimum
quality of used technologies, the mean utility of agents, the total number of recombinations and
the accumulated entropy. the first two variables are computed at the end of the simulation run,
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while the second two are cumulative variables, being made of the contributions of all periods in
the simulation time horizon. In particular, the entropy measures at the same time the variety
and the symmetry of the system. In a given period t, the entropy of the system is defined as

Et = −
∑

α∈At

nα,t

N
log2

nα,t

N
(12)

Let us initially consider a situation with only 2 agents and very low decision externalities,
e = 0.1. The left part of figure 10 reports the cumulation of two quantities over the time
horizon considered (100 steps), namely the accumulated entropy and the total number of re-
combinations. On the right part of the figure, instead, we have the values of minimum quality
of used technologies and mean utility of agents at the last step of the simulation run (the 100th).
Two main facts arise from a quick visual inspection of the graphs: first, there is one value of
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Figure 10: Simulation with e = 0.1 and N = 2. Left: accumulated entropy and total number of
recombinations. Right: Minimum quality of used technologies and mean utility across agents.

the probability of innovation p that is an interior maximum for the accumulated entropy and a
larger value of p that is a maximum for the number of recombinations. In other words, the value
of p that maximizes entropy is much lower than the value that leads to a maximum number of
recombinations. Secondly, the minimum quality of technologies and the mean utility of agents
are strongly correlated, as expected considering how utility is defined (see equation 1), and they
are strictly increasing in the probability p.

What is the effect of stronger network externalities? Figure 11 reports the results for e = 0.5.
The effect is moderate, and any effect is hardly detected. Only a slightly lower maximum for
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Figure 11: Simulation with e = 0.5 and N = 2. Left: accumulated entropy and total number of
recombinations. Right: Minimum quality of used technologies and mean utility across agents.

the total number of recombinations. What is the effect of a few more agents, instead? Figure
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Figure 12: Simulation with e = 0.1 and N = 5. Left: accumulated entropy and total number of
recombinations. Right: Minimum quality of used technologies and mean utility across agents.

12 considers a case with 5 agents and e = 0.1. Here the differences are more evident: first of
all, the value of p that leads to a maximum number of recombinations is quite lower than with
only two agents. Secondly, the minimum quality and mean utility reached at the end of the
simulation time horizon seem to saturate for large values of p. In other words, with five agents
when p is relatively large the marginal contribution to utility of increasing p further is negligible.
This suggests that pushing p to large values over some saturation level is useless. Notice how
the limit value of the utility for p → 1 is predictable: it coincides with the time horizon of
the simulation (50 in this case). This means that when agents innovate with probability one,
quality increases at every time step and the model is fully deterministic.

The combined effect of a few more agent and stronger externalities is not big: with N = 5
and e = 0.5 we obtain a picture much similar to the case N = 5 and e = 0.1. This indicates
that for small sizes of agents population, increasing the number of agents has a much stronger
than increasing the magnitude of network externalities’ in agents decisions.

Let us now consider 10 agents. Figures 13, 14 and 15 show the results for this case, with
e = 0.1, e = 0.5 and e = 1, respectively. We focus on the graphs of accumulated quantities, first
(left part of the figures). Increasing the magnitude of network externalities e, the maximum
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Figure 13: Simulation with e = 0.1 and N = 10. Left: accumulated entropy and total number
of recombinations. Right: Minimum quality of used technologies and mean utility across agents.

of accumulated entropy goes down considerably, while such maximum is attained for slightly
larger values of p. The curve of the total number of recombinations is almost the same for
the three values of e, instead. We may say that stronger network externalities lead to lower
entropy, increasing the level of coordination of agents in the system. Looking at the levels of
quality and utility in the final period (right part of the figures) we see that 10 agents produce a
stronger saturation effect of p: when p > 0.6, a further increase of this probability hardly gives
any benefit, with no much differences for different values of e. Now with 10 agents we se clearly
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that in the limit p → 1 the minimum quality level gets to a value equal to the time horizon of
the simulation, and the utility gets to the same plus the externality of all agents, that is T +eN .
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Figure 14: Simulation with e = 0.5 and N = 10. Left: accumulated entropy and total number
of recombinations. Right: Minimum quality of used technologies and mean utility across agents.

The simulations with 10 agents present a second effect from network externalities: the
occurrence of an S-shaped behaviour of the quality and utility curves, which become convex for
low values of p. This means that when agents are more than a few and network externalities
are intense, there is kind of a threshold value of the probability of innovation, after which
technological transitions take off with consistent increases in quality and utility.
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Figure 15: Simulation with e = 1 and N = 10. Left: accumulated entropy and total number of
recombinations. Right: Minimum quality of used technologies and mean utility across agents.

The effects considered above become more evident with a larger population size. In the
two figures that follow we consider the cases N = 20 (figure 16) and N = 50 (figure 17). One
effect of increasing further N and e is the lower maximum point of total recombinations, which
becomes almost coincident with the maximum point of the entropy. In other words, with many
agents and strong network externalities, there is a value of the probability of innovation p that
maximizes both entropy and number of recombinations. A second interesting effect is the non
monotonicity of utility for low values of p. We have seen before that with 10 agents a strong
magnitude of network externalities e makes the utility curve S-shaped. With more agents, this
effect is more dramatic, producing an utility curve which is decreasing for low values of p and
increasing for larger values. The same effect is not found for the quality level of technologies,
because this is always 0 when p = 0. Beside the non-monotonicity of the utility curve, the
combined effect of larger population size and network externalities deviates from the S-shape
also for mid values of p: as the bottom part of figure 17 shows, the marginal effect of increasing p

in the range (0.3, 0.6) is quite irregular, suggesting a local S−shape before getting to saturation.
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Figure 16: Simulation with N = 20. Top: accumulated entropy and total number of recombi-
nations. Bottom: Minimum quality of used technologies and mean utility across agents. Left:
e = 0.1. Centre: e = 0.5. Right: e = 1.
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Figure 17: Simulation with N = 50. Top: accumulated entropy and total number of recombi-
nations. Bottom: Minimum quality of used technologies and mean utility across agents. Left:
e = 0.1. Centre: e = 0.5. Right: e = 1.

As a final piece of analysis we look at the welfare of the system, considering also the costs
of innovation. A natural way of measuring innovation costs is to interpret the probability of
innovation p as the effort devoted by a government policy to subsidize innovation. In a first
approximation, the probability of innovation is assumed to be directly proportional to these
costs. Then we measure the welfare as the mean utility net of such costs:

w =< u(p) >N −cp (13)

where the proportionality parameter c measure the efficiency of the innovation policy (the lower
c, the more efficient the policy investment). Our main interest is to see whether there exist an

14



optimal level of policy investment p that maximizes welfare. Figure 18 reports the value of w
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Figure 18: Measure of welfare w for different values of the innovation probability/cost. Left:
N = 5. Centre: N = 10. Right: N = 20 (e = 0.5).

as a function of p for three different sizes of agents population (N = 5, N = 10 and N = 20),
always with a fixed level of network externalities (e = 0.5). As we can see, there is clearly
an interior solution for the welfare maximization problem (at least one). Moreover, as the
population size increases, small values of p give a minimum of the welfare. This character of
the dependence of welfare on p directly follows from the qualitative behaviour of mean utility
that we have analyzed before: the S-shaped profile of utility lead to an interior maximum of
welfare. This indicates that innovation policy efforts should be large enough in order to trigger
the occurrence of innovations, but not too large because after some level the marginal benefits
of any further investment is almost zero.

4 Conclusions

In this paper we have proposed an agent based model of technological change, that puts emphasis
on two mechanisms of innovation, namely technological branching and technological recombina-
tion. The action of innovating agents is central in the model, which is an aspect that recognize
the important role of entrepreneurs in technological change. Innovation is made by innovators
but it is shaped by adopters. The model accounts for the stylize facts of technological changes
such as increasing returns on adoption and path dependence, introducing a positive network
externality in the utility of agents.

The model is able to replicate qualitatively some stylized facts of technological transitions:
innovations occur in a punctuated and irregular fashion. Moreover the model captures the path
dependency of technological change as well as its extreme effect leading to technological lock-
in. The model also is able to account for the occurrence of potentially good innovations that
became unsuccessful only because of network externalities.

We have derived a number of analytical and numerical results about this model. We have
shown analytically that innovation size matters, and a critical mass of innovators is necessary
for an innovation to be successful and determine a technological transition by attracting all
the agents of the parent technology. In the case where only branching innovation can take
place (recombination being excluded) we have derived the analytical condition for successful
innovations, which links the agent population size to the magnitude of network externalities:
for a given population size, the weaker network externalities are, the more often technological
transitions occur.

By running an extensive simulation experiment we have analyzed the role of the probability
of innovation in different conditions of population size and network externalities, obtaining the
following results: there are interior solutions for the maximization problems of accumulated
entropy of the system and for the total number of recombinations in terms of the innovation
probability. These interior solutions do not coincide. When the population size is small and
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network externalities are weak, the accumulated entropy is maximum for a value of the proba-
bility of innovation smaller than 0.5, while the total number of recombinations is maximum for
a value larger than 0.5. By increasing population size and network externalities these interior
solutions get closer to each other, until they almost coincide for N = 50 and e = 1. The mean
utility of agents and the minimum quality of used technologies are strongly linked in our model.
When the population size is small and network externalities weak, these two quantities are in-
creasing in the probability of innovation, with a behaviour showing a saturation effect for large
values of this probability. In other words, when the probability of innovation is above some
level, the marginal effect of any further increase is negligible. A stronger network externalities
effect makes the utility and quality level curves S-shaped, indicating that a threshold value of
innovation probability is necessary in order to boost innovation. When such strong network ex-
ternalities are accompanied by a large population size, an interior minimum of utility appears:
if we increase the probability of innovation starting from zero, initially the mean utility goes
down, indicating a detrimental effect of innovation. Above such interior minimum, the utility
returns to be increasing in the innovation probability, although it shows different values of the
rate of increase before getting to saturation.

Finally we introduced a policy view in the analysis, by interpreting the innovation probability
as the effort made in order to foster technological change. By looking at a welfare measure that
takes into account the costs of such a policy, beside the utility of agents, we find the existence
of at least one optimal interior value of the innovation probability. The existence of such an
interior optimum comes from the S-shaped behaviour of the utility. Moreover we have found
evidence of possible multiple interior solutions for the welfare maximization problem. This is
due to the fact that the utility deviates from the S-shaped behaviour not only for low values
of the innovation probability, but also for mid values, when both the population size and the
network externalities are large.
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Appendix A Model description

In the model there is a constant population of N agents (N ≥ 1) and an evolving set of
technologies that agents may use. The model runs in discrete time-steps. At any given time-
step t, each agent is using one and only one technology, and derives a certain utility from doing
so. The utility uα,t gained at time-step t when using technology α comes from an intrinsic
quality of the technology lα and from the positive externalities that other users of α exercise
(equation 1 in the main text):

uα,t = lα + enα,t (14)

where nα,t indicates the number of agents using technology α in period t, and the parameter
e ∈ [0, 1] measures the strength of the externalities. Each time-step in the model consists of
two stages that take place sequentially: the innovation stage and the decision stage.

Innovation stage

Technologies form a directed network where they represent the nodes, while the links express
the generational relation. This network evolves in time due to the possibility that agents in-
novate and create new technologies. In every time-step, each individual agent innovates with
independent probability p. Innovations take place differently depending on whether recombina-
tions of existing technologies are allowed or not, something which is determined exogenously in
the model.

• If recombinations are not allowed, each group of innovators using the same technology
α branch out from α to jointly create a new technology α∗ with intrinsic quality level
lα∗ = lα + 1. Thus, in this case the number of technologies created in time-step t equals
the number of different technologies being used by the innovators.

• If recombinations are allowed, all innovators join up to create one single new technology
β by recombining all the different technologies αi they are currently using. The intrinsic
quality level of the new technology is one unit higher than the highest quality of the
technologies being recombined, i.e. lβ = maxi{lαi

} + 1.

In either case, whenever a new technology is created, a link is formed from each of the technolo-
gies used by its creators to the newly created technology. If all the creators of a new technology
come from the same technology we say that the innovation occurred by branching. Otherwise
we say that the innovation occurred by recombination. Thus, it is clear that a technology has
been created by recombination if and only if it has more than one incoming link in the network.

Decision stage

The decision procedure is different depending on whether the agent innovated or not. Naturally,
all time-step innovators decide to use the technology they just created. Then, the agents who
have not innovated in the current time-step synchronously decide which technology to use.
The non-innovating agents will switch to the technology that provides them with the highest
utility, once switching costs are taken into account. We assume that the cost of switching from
technology α to technology β equals the geodesic distance dαβ between technologies α and β in
the technological network. Thus, the benefit of switching from technology α to technology β is:

∆uα→β = uβ,t − uα,t − dαβ (15)

A non-innovating agent using technology α will change technology if and only if there exists
some other technology β such that ∆uα→β > 0. In that case the agent will choose the technology
that provides him with the highest benefit ∆uα→·. Ties are resolved randomly.
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