The Collective Construction of Digital Platformg fdobile Services:

the Mobile OS for Smartphones

Adrien Querbes-Revier, PhD Student

GREThA, Université Bordeaux IV — Montesquieu, Fanc

adrien.querbes-revier@u-bordeaux4.fr

Paper prepared for EMAEE 2011
7th European Meeting on Applied Evolutionary Econzsm
"Evolutionary Perspectives on Technical Changeladdstrial Dynamics"
February 14-16, 2011

Sant'’Anna School of Advanced Studies, Pisa

Abstract: Under different terms — e.g. platformerharchic, modular, complex — systems
made of interdependent components managed by antsfhave been subject for many
studies in the economic and management literatar¢his paper, we consider though that
these studies are more focus on the components tmarthe interfaces managing
interdependences. Consequently, based on the rdoemializations of the industrial
dynamics related to complex products — as “platfamhitecture” (Gawer, 2009) and
“‘dominant design model” (Murmann and Frenken, 20863% paper is a very first proposition
to formalize our project of interface analysis iete perspectives. The aim is to produce a
strong enough set of hypotheses related to intesfat order to implement them into
computational experiments of system simulations. tBa technological side of complex
product systems, we argue that interfaces are tcarmysed independently from the
technological components. Then, on the organisatiside, interfaces have counterparts, via
the definition of property rights, the active défan of technological knowledge and the
hierarchical validation. These counterparts are exidbd into higher-level standards which
co-evolve with technologies and low-level interfacaccording to strategic and economic
concerns of the complex product system stakeholdersally, we organize this idea
according to the representation followed by evohairy computations, as the first sketch of
one simulation model. This paper is a first stepcamstructing an agent-based model of
architectural innovation faced by complex produdikeanwhile, we attempt to keep the
intuitive and simple representation of NK modelsstis the reason why we have made this
step back to theoretical foundations.

1 Introduction

This paper deals the development projects of Opgr&ystem (OS) for smartphones.
In this extent it aims to question the recent adeann the economic literature on complex
products. The point is to produce a robust fram&wfor system simulations — via
computational experiments — addressing the issagcbitectural innovationHenderson and
Clark, 1990) in general, and, more particularly,gaing in the mobile industry: the
reconfiguration of the system linking existing fixand mobile digital services, thanks to the
trivialisation of smartphones. That is why, we pagticularly interesting in the representation
of the OS as a system, in an economic perspedtivdenutshell, at the technological level, the
mobile OS is acomplex systerma set of components with strong interdependeneviegch
“constrains the adaptative potential of systems, #meteby, the possible paths of evolution
(Frenken, 2006, p.3). At the organizational levetl,is necessary yet to coordinate
complementary and heterogeneous knowledge and gkilbugh collective, localised and
historically determined process. However, the statof firms — involved in the mobile OS
production and innovation — varies from the “opemrse” community approach to vertical
integration. Hence, we aim to explain the rationated outcomes of this diversity of
strategies. In fact, this paper follows a previpaper, which puts forward this diversity from
case studies. That is why, we attempt here to baildramework for computational
experiments with a “cognitive” perspective (e.g.rtego and Dosi, 2005), i.e. by articulating
complexity at the technological and organizatideaél.

In this attempt, we survey several trends of ttexdiure in sections 2 and 3. In section
2, we focus on the technological side of complestays. In line with Simon (1962), one
means of reducing complexity is to hierarchicallgcdmpose complex systems into
subsystems. This approach is to be found in tmswexsal definition oplatform architecture
made by Baldwin and Woodard (2009), which stemsnfr@ decomposition in terms of
modularity (Baldwin and Clark, 2000), with an emphasis onhietogical hierarchy It
should be recalled that although platform architexts still a modular system, it is itself split
into a platform as core, together with itsomplementsinteroperability being managed by
interfacé specifications. By being transversal, this deifimitaims to work with many types
of complex systems, from product to organizatiomd,aconsequently, facilitates the
articulation of literature from evolutionary econias with other literature, particularly
system engineering. Meanwhile, Murmann and Frer(R&06) have performed a relatively
similar effort of concept standardization at thedarct level. For them, products areested
hierarchy of subsystemsvhere core components inside each subsystem deflominant
design by opposition withperipheral components. Hence, among other things, they go
further in the decomposition of the platform arebture.

According to these definitions, we call — in thiscBon — for the integration of the
interface design — and consequently of the produaititecture — as a part of the simulation

1 n this extent, the worihterfacerefers to the cement between software compon@hts.differs from
user interfacawhich refers to the interactions between the saftwand its (human) user.

framework. In fact, for software projects, modutation arises almost naturally and is
defined as a norm of modern software programmirigni®@ and Apple, 1999; Parnas, 1972).
Consequently, interface design is particularly mexglicit compared with other products,
and is assumed to manage interdependences amonglesiddr the best. For Meyer and
Seliger (1998, p. 62), actually in“software, the interfaces reign supreme, thatostrolling
their design and evolution can lead to long-livegtems and is one element of market
domination. In fact, the interfaces between sulesystcan easily be more important than the
subsystems themselves. Microsoft, for exampletigély guides the innovation of thousands
of independent software companies by having degdl@md promoted as a ‘standard’ the
interface mechanisms that allow different programsommunicate with one another in a
Web-centric distributed computing environment —vikmoamong software developers as
‘ActiveX™. So, most of the surveyed research refers to ¢exngystem as modular / nearly-
decomposable system; but, it lies on the idea ttiatfew interdependences which remain
between modules are detrimental to perfect decoatydy of problems, and, therefore, for
the organization performance. By endogenizing tirapexity of interdependencies as a part
of the firm strategy — in line with Baldwin and @g2006) — we follow a different approach
for the link between technological and industrighamics. We aim not to challenge the
existing literature: conversely, we consider thhis tliterature has mainly focused on
component based innovation, while we are mainlgregted by architectural innovation.
Thanks to the clarification and standardizatioroffowardsplatform and dominant design
concepts, we assume thatterfaces too could benefit from a better formalisation in
innovation models. In this line, we question thdigtof various abstractions to do so.

In section 3, we focus on the diversity of orgatiaaal strategies in the mobile OS
market. Murmann and Frenken (2006) encourage gearehers to analyze the organizational
architecture in the light of the complex producthatecture. By this way, they refer to
research showing the interdependences betweenolegital and organizational structure.
For instance, Brusoret al. (2001) explain this interdependence by the leveirmwledge
specialization facing technological change; inwafe projects, MacCormaakt al. (2008)
find empirical evidence of thenirroring hypothesisi.e. commercial [resp. open source]
software developed by tightly- [resp. loosely-] ptad has a less [resp. more] modular
design. But beyond this hypothesis, the interesioislecompose these interdependencies
according to the various level of the product el Hence, after a brief historical and
organisational description of the main mobile O®jguts, we analyze the organizational
counterparts of interfaces at the subsystem lewel:ithe definition of property rights, the
active diffusion of technological knowledge and tlierarchical validation. These
counterparts are embedded into higher-level stalsdahich co-evolve with technologies and
low-level interfaces, according to strategic andneenic concerns of the complex product
system stakeholders. We split the standardizationgsses into two categories, whether they
refer to the compatibility standards among layerside one single platform; or, to the
emergence of standards inside one layer.

In section 4, we summarize, from the previous eestia set of hypothesis to produce
the architecture of an economic model for compaorteti experiments. At the current stage of
our project, we are not able to produce resultabse some parts of the model have to be
improved to produce a complete and working modelweler, we provide three sets of
postulates sketching the main parts of the modie: structure representation, the genetic
operators (i.e. the rules governing the evolutiandl the potential costs and benefits of this
evolution. Even if, the results are not availald¢, yve retain two sets of argument to support
this project. In general, computational experimets interesting because they help to avoid
some contingencies of the other empirical methdés: instance, with computational
experiments, we are able to deal with complex @m®ee by producing as much data and
indexes as necessary. More particularly, it hetpsnerge data and processes from micro-
levels (e.g. interfaces) with meso- or macro-levdsg. standardization). Then, some
empirical hypotheses lie on results provided viawations; hence, the interest to merge
these hypotheses, in order to test their robus@easwhole. To our knowledge, this work has
some equivalent (e.g. Woodard, 2008), but not witinamework based on the evolutionary
economics. In this project, we find a major help e nearly-paradigmatic evolution of
computer science and design engineering towardsitemwary computation.

2 Complexity at the Technological Product Level

2.1 Modelling System Interdependencies: the NK Model

In line with Baldwin and Woodard (2009), systemendependencies and system
decomposition raise the question of the platforrejsresentation. In this paper though, we
extend the idea of representation — as a grapkoodl— to the domain of modelling and
simulation techniques. They present the Designc&tre MatriX (DSM) as a powerful tool to
draw a diagram of interdependences inside a phatfarchitecture. This matrix is generally
symmetrical and binary, i.e. it shows whether them dependency (or not) of the elements in
row with elements (of the same platform) in columibis representation is particularly
appealing to link platform architecture and Kaufm'an(1989) NK adaptive landscape model
(see Box 1).

This is extensively used to analyze the compleaftjnnovation process although it
originates from biology, more precisely from theokexionary dynamics of genes. The
distance between this approach and the evolutiotgmgamics of technologies is very short.
For example, the organism may refer to a produadem# with technological components
(the genes) according to specific techniques (lleicavalue). Researchers have also drawn a
parallel between this model and project or policgnagement at the organizational level.
These works produced a large amount of interesanglts, in the abstract level, for a better

2 For an application to software, see MacCormachl.eR006
% See Frenken (2006, chap. 2) who gives a syntleésis main results for evolutionary economics; see
also Ganco and Hoetker (2009) for a survey of NKlatiing in strategy literature.

comprehension of the “difficulty” faced by organipas to solve complex problems because
of the complexity of interdependencies and / or skarch strategies in exploring fitness
landscapes.

Box 1: The NK Model in Figure 1, gene 1 depends on genes 2-6-7-8.

We can split the model down in two parts: the Second, one explores the fitness landscape by
fitness landscape and the search algorithm. mutating the allele of one gene: this means that
one draws a new fitness contribution for this
gene as well as for the dependent genes. For
instance, in Figure 1, if gene 2 mutates, one
draws randomly a new value fBp, Fgs andFq

from the uniform distributionU(0,1) One
keeps the mutation, provided that it produces a
fitness increase and so on and so forth.

First, the genome of an organism is made up
with N genes Each gene has atlelic value: O

or 1, in the model. The set of allelic values at
the genome level is thgenotypewe represent
this with a binary string (e.g., 011001, for
N=6). Each genotype gives a specifimess
level for the organism in its environment.
Consequently, for the genotype, the set of
fitness levels draw the NHKitness landscape L
In this model, the gene’s contribution to fitness 2
depends also on the allelic value of K related s
genes, nameepistasis

1 2 i 4 3 g 7 a 9 10

This is summarized by:

F(X)Z%ZFi(Xi;Xil"”’xiK) (1)

whereF(x) is the fitness of a given genotype,
as an average of the fitnds§) of each gené 9
which depends on the epistasis with the genes 10
Xi1,.-- X In fact, one draws randomly the

epistatic relations of an organism: for instance,

Figure 1: Random epistatic relations forN=10, K=4.
The genes in row depend on K genes in column.

However, Valente (2008) explains that adaptaticengelto be made in order to reduce
the biological and abstract characteristics of timedel. Hence, he proposes a “radical
alternative implementation of the core featuredlifin such a way to make the model more
flexible and adapt for the novel applications itinsreasingly put at work”. In his model,
namedPseudo-NK there are three main differences: (i) interdepecds and allele values
are not binary, one can use various level of ipethdencies and infinite real-valued alleles;
(i) one can define the location for the globah&ss optimum of landscapes; (iii) one can use
various search distance for the exploration of $gages. By doing so, he aims to develop a
more realistic approach of evolutionary proceswairiby human problem solvers with
economic incentives. In particular, the interess lin the possibility to implement this model
within wider agent-based models of markets, orgemnas and so on.

Equally, NK model has major limitations when a mitetetries to address the
modularity and decomposability issues. For FrenkK@006, p.36), modularity and
decomposability are not interchangeable concemsomposability concepthblds that a
decomposable system is no longer one system, roptysa collection of multiple system of
smaller size. [...] A modular system is a systemd¢hahot be portioned into subsystems such

that no interdependencies (epistatic relationskeketween subsystems, but which contains
subsystems, called modules, that are mediatedtesfanes. These interfaces are elements of
a system that connect subsystems such that thepishatic relations between the subsystems
are via the interface standard<Clearly, there is no perfectly decomposable exysin mobile
platform projects (Yakob and Tell, 2007), but ngatecomposable (Simon, 1962). Hence,
near-decomposability and modularity definitionsrshidne idea thatd nearly decomposable
system — which is the best one could hope for enrédal world — is one in which the
probabilities of interaction within the subassemf@ybmatrix) are much higher than those of
interaction outside of ’it(Langlois, 1999, p. 4). In fact, dealing with shissue, most of the
research using NK models does not generate intendigmcies randomly: Figure 1 shows
random epistatic relations and, obviously, neaedgmosability appears very rarely with this
method. Consequently, researchers have constrowedally patterned NK problems, using
very abstract hypotheses about the representdtithrese problems.

In line with Brusoni and Fontana (2011, p. 71adVanced technological knowledge
about component interactions is used to fully dgeand standardize component interfaces
and, therefore, to decouple the design of the prbduchitecture (i.e. arrangement of
functional elements) from the design of each mddd@ensequently, we split these papers
into two categories, whether interdependencies dé@twsubsystems are one part of the
problem or one part of the solution:

- Patterned NK models using given architectures asblpms” does not match with a
framework devoted to the simulation of architedturaovation (Frenken, 2006,
p. 39); notwithstanding their interest for the otf@ms of technological change. For
instance, several papers study the link betweeblgm decomposability and solver
decomposability, according to: e.g. incentives anthority (e.g. Doset al, 2003;
Rivkin and Siggelkow, 2003); changes in the enwiment (e.g. Siggelkow and
Levinthal, 2003; Brusoret al, 2004).

- Conversely, some patterned NK models have beemgmssito analyze the problem
architecture. For instance, Rivkin and Siggelko®@02) use DSMs from “real-world”
decision processes to build ten archetypes of aistelations. By this way, they
show that holding fixed the total number of interactions amalecisiongK], a shift
in the pattern of interaction can alter the numlwériocal optima by more than an
order of magnitudé(ibid., p. 1068). Winteret al. (2007) use a similar approach, but
with higher level of abstraction, by adding a caigei dimension to the search
heuristic. Equally, Frenkemt al. (1999) analyze the benefit for an organization to
match the real structure of a complex problem.rgjldand Levinthal (2002, 2004) go
further: they test the ability of an organisationfind the true structure of a complex
system, according with simple rules, echoing madafgerators (Baldwin and Clark,
2000).

Anyway, according to the definitions of platfornchitecture (Baldwin and Woodard,

2009) and dominant design model (Murmann and Frerk@06); these latter propositions are
still incomplete. By definition, the architecturé epistatic relations — constructed via NK

models — maps elements of the same domain, whiefaices are elements which cannot be
reduced to this sort of interdependences. Moredkierdecompositions of this architecture do
not take into account the hierarchy between codepanipheral modules.

2.2 Going Back to the Mobile OS: Towards Hierarchical
Decomposition

In order to produce such a representation Murmamh Frenken (2006) refers to a
model generalizing Kaufmann’'s (1989) NK model, digsd by Altenberg (1994). Both
models share the same representation of genomeeamutype. However, the complexity
(related to epistasis in Kaufmann’s model) is nahated topleiotropy, i.e. the number of
functions of the organism affected by one gene. 3éteof genome’s pleiotropy is a map
namedgenotype-phenotype mgpee Figure 2), since it connects genes and humsiof the
organism. The K parameter disappears: the only itondis that each function must be
connected with one gene at least. Meanwhile, thebeu of genes affecting one function is
namedpolygeny Consequently, in the product perspective, whith Waufmann’s NK model
one was looking at the interdependences betweémadagical components (the genes), one
represents now the interdependencies between tecfited components and the “service
characteristics” (the functions) as seen by endsused / or project managers.

Hence, there are two domains of interdependenbetsieen technological components
as well as between technological components amdeckicharacteristics. This notion comes
from Saviotti and Metcalfe (1984), based on theidé Lancaster (1966) to define products
as a set of characteristics. In their view, thehmémal characteristics are the “internal”
characteristics, i.e. the components. Their comimnaproduces “external” characteristics,
i.e. the service as seen by end-users. For hiecatcllecomposition, the technical
components with high pleiotropy are core componéeisause they affects many services,
and reciprocally. So, Murmann and Frenken (2004} Bmh pleiotropic components into
core components and interfaces: at each levelrfaces integrate components into
subsystems or subsystems into systems (see Figure 2

Figure 2: “Example of a genotype—phenotype map

with 9 services characteristics (rows) and 12 teclual

characteristics (columns). Column 1 is an interface

standard with a pleiotropy of 9. Column 2 is a core

component with a pleiotropy of 5. All other

components are peripheral with a pleiotropy of 2”
(Murmann and Frenken, 2006, p. 941).

As an abstraction this mapping has interesting features. Genotypsptype maps

connect objects from two different domains: thistedction is shared by other approaches.
For instance, Danilovic and Browning (2007) namesth cross-domain maps Domain
Mapping Matrices (DMM) and show their relative adtsges for complex product
development projects, compared with DSM. Equallgidgin and Woodard (2009) introduce
layer mapsas a two-domain representation of the industry peition: they show how
several firms compete on several layers of comphang components from the platform
architecture. This is a relatively intuitive way riepresent the industrial structure in terms of
vertical and horizontal integration.

More particularly, for Antonelli (2005, p. 55)kfiowledge emerges out of the inductive
process of abstraction and generalization ratheanthfrom the deductive process of
application of general ideas to specific circumstag. Hence, these maps are particularly
interesting because they merge technological reptagons and the effect of technologies on
product’s services / functionalities. This seconddin is highly dependent on the own vision
of its modeller, and, therefore, provide a strormnrection between technology and
organization. Moreover, this kind of abstractionisex also in computer science, where
operating system is represented via layers. Medawhy using abstractionsgefpirical
research on dominant designs requires a judgmeotialwhether two designs are different or
the same. The outcome of these judgments depeuncisligr on the level of resolution or
granularity one brings to the analy8igMurmann and Frenken, 2006, p. 934). With high-
level abstraction, the OS is nothing more thanrdariace between applications (software)
and physical resources (hardware). This representatan reduce the performance, increase
the complexity, and limit the functionality of ajpption programs (Engleret al, 1995, p. 2);
hence, the interest for lower-level abstractionuddly, we have to define the modular system
boundaries: since the OS is made up of digital Hesgjwur criterion is to define the modular
system as technologically homogeneous, therefordem#p of the OS and its digital
complements, i.e. the digital modules supportirgrédated applications. Figure 3 shows the
Android architecture representation. Put in oumieavork words, we see the services
(applications) at the top, resulting from core gpvetipheral digital modules, organized
hierarchically from the kernel to the applicatioarhework.

This abstraction does not put forward the intedatieey are actually implicit. To know
where the interfaces are, we have to go further ihé abstraction, via the conceptooide
reusability In fact, ‘in software product lines, there are two kinds s$ets, core assets and
custom assets. A core asset contains a set of dospacific but application independent
components that can be adapted and reused in vamelated applications. A custom asset
contains a set of application specific componédmtsoftware product line, core assets, which
are designed for reuse within the specific domare, more stable than custom assets, which
are designed for a specific applicatioYu and Ramaswamy, 2006, p.5). This idea is
consistent with Murmann and Frenken (2006)’s prajmwrs as well as with Baldwin and
Woodard (2009, p. 25):a‘ platform architecture displays a special typenaddularity, in
which a product or system is split into a set omponents with low variety and high

reusability, and another set with high variety dod reusability, respectively the core and
complements. More particularly, for OS, the majorecasset is the kernel (see Figure 3).

APPLICATIONS |

I Hame Contacts Phone Browser
|
L

APPLICATION FRAMEWDRK

Acciviey M r Window Content View |

Manager Providers System
T o o e
LiIBRARIES AMNDROID RUNTIME
| 'Suﬁ&e I'hmger ¥rimrlc - SQlLite Core Libraries
OpenGL|E5" FresType O Webkir %
SGL ' S5t " Iibe — = J
LiMUY KERNEL

o ot —— .
Keypad Driver WIFi Driver e Pekialiy

Figure 3: Android platform architecture

Source :http://developer.android.com/guide/basics/what-is4adroid.html

Consequently, Lueet al. (2001) shows that the reusability of software cormgnts
exhibits different types of modularity, via differetypes of code reu$eThere are three
possibilities:

- Copy-and-pastepieces of code are directly reused in other soiwEventually, the
copied code will not be recognizable, and, theesfoould be changed and evolves in
different direction.

- Statically linked library pieces of reused code are identifiable as modulas
libraries. But this library are pasted in all thgeeutable files where they are
necessary,éach of these has to be rebuilt when the libranypdated.

- Dynamic linking this piece of code exists in a single copy (afmgle module) and is
accessible for programs which need it. There isheinge to do on these programs if
the module is updated, but this increases compléxiintroducing dependencies.

Except for the first case, these “links” define theerdependences between modules:
they are the interfaces. First, they describe ftiohitecture, sincewe have a hierarchical
structure if a certain relation may be defined betw the modules or programs and that
relation is a partial ordering. The relation we amdncerned with is ‘uses’ or ‘depends
upon” (Parnas, 1972, p. 425). Second, in computin@rsoe, they are explicit, because they
provide all the information necessary to interadthvthe code which could be, therefore
“hidden”. One names them Application Programmintgiface (API); they define the rules,

* “Code reuse means that an application reuses a coemicby accessing its actual code (whether in
source or in compiled form), loading it into memaapd then executing’ifibid., p. 2).

the vocabulary and the functionalities to conn@ogpams from various layers. Consequently,
we assume a small change, compared with the defirof Baldwin and Clark (2000, p. 77),
but coherent with the definition of Baldwin and Waod (2009): the interfaces, as
interdependences among components, define theteotthie or design; they are the design
rules.

2.3 The Evolutionary Processes

The biological analogy is not limited to the regnetion of complexity: it is also used
to describe the system evolution. For Leeml. (2001, p. 1), évolvability is the property of
programs that can easily be updated to fulfil n@guirements; software that is evolvable will
cost less to maintain. A component-based applinaisoevolvable if it is easily possible to
exchange individual components without changingersth It echoes clearly the idea that
“modularity would enhance the ability of the genstgstem to generate adaptive variants,
which one can refer to as its ‘evolvabilityfAltenberg, 2005, p. 2) in biology, as well agth
idea offlexibility in economics and management (Sanchez, 1995; Baldmd Clark, 2000).
But, concretely, how is performed this evolution™K models, evolution consists in allelic
mutation of genes in order to increase fitnesss Vision is simplistic for biological organism
as well as for software projects.

That is why Altenberg (1994) proposes the methodooistructional selectiarHence,
based on a genotype-phenotype map, one fills apdowves step-by-step an empty genome,
regarding the algorithm shown on Figure 4. So,nia® is not randomly constructed ante
with given values of N and K, but it is randomlynstructedn vivo according to its shape at
the previous step. The landscapes generated inwiys differ radically from usual NK
approach (see Figure 5). This double process ahgdthd mutating genes has not as main
objective to mimic the genome growth of an organidmt rather to back theoretical
hypotheses. Hence, constructional selection engearanodularity, since the pleiotropy of
new genes decreases step after step: the latest gea only connected with the very few
functions which have not reached their maximume#fg value. By this way, applied to
industrial dynamics, this model proposes an abstraof temporality. Murmann and Frenken
(2006) apply this representation to product architee, putting forward thatohce a design
has settled on particular variants of core compdegfurther advances are concentrated in
peripheral components orilyibid., p. 941). Applied to software development, Vorogn et
al. (2009) find opposite results (peripheral composeate introduced earlier and core
components are subject to evenly changes), whileQdamack and Verganti (2003) show
that, facing technological and market uncertaistftware projects practitioners who achieve
the best performances are those who invest intaathral design during the early stages of
the project. For us, these differences in the ofasiens come from various representation of
the temporal organization of software projectsinedr sequence may be observed, sirce
modular design process has three basic stagesith@)formulation of design rules; (2)
parallel work on hidden modules; and (3) testingl amtegratiori (Baldwin and Clark, 2000,

p. 246). However, this sequence is cyclical becatinge interface architecture is to be
continuously improved as long as new interdeperngieamong components are discovered or
created. Unlike biological organism, texting antkégration of software system does not mean
the death of non-fitting projects, but a new cyoferedesign, debugging and so on. For
instance, Narduzzo and Rossi (2003) study a seipeh source projects and observe that
architecture of software are inherited from presi@oftware system to avoid the problems
related to designing the architecture from scraiths method is relevant for our case, since
we have seen that one mobile OS platform (Androéd)ses the kernel of Linux (Figure 3,
above). Equally, Yakob and Tell (2007) study onmptex mobile platform project, where a
basic architecture is designed according to amaingiet of functionalities and benefits of
cyclical improvements while new sets of functione$ are added.

. ADDANEWGENE o-amtwe~eas ooy
A TO THE GENOME F---r---FFFFHFHFHF— -

F1

* F2

F3

OBTAIN ITS Fd

FUNCTIONAL EFFECTS F5

RANDOMLY FROM A N EE

GIVEN DISTRIBUTION Fé

F9
/ IF \ F10
Fi1
NEW GENE PRODUCES NEW GENE PRODUCES F12
AFITNESS DECREASE A FITNESS INCREASE F12
CONSTRUCTIONAL h F15
SELECTION F16
F17
- REJECT IT KEEP IT Hg
F20
ADAPT THE GENOME THROUGH Eel
- ALLELIC SUBSTITUTION UNTIL H F23
ITIS AT A FITNESS PEAK] [| I F24
Figure 4: The genome growth algorithm with Figure 5: Random genotype-phenotype map

constructional selection (Source: Altenberg, 1994) with constructional selection

This process could involvepeciation (Frenken, 2006, p. 46). This idea refers to a
bifurcation of a system into several trajectoriel@ed to specific selection environment,
because of end-users heterogeneity. This situattomot detrimental, compared with
standardization, if a single platform core is ntieato serve the whole set of service
characteristics asked by end-users. However, sddtvpdatforms are more flexible than
physical platforms and biological organisms, sitieey are less constrained by physical laws:
S0, speciation is less likely to occur. For ins&grin the case of a major mobile OS platform
(Android): “updates to the framework API are designed so that iew API remains
compatible with earlier versions of the API. Trgtmost changes in the API are additive and
introduce new or replacement functionality. As paof the APl are upgraded, the older
replaced parts are deprecated but are not remosedhat existing applications can still use
them. [...] You can determine the lowest possible platform imerdy compiling the
application against successively lower build tasyeifter you determine the lowest version,
you should create an AVIAndroid Virtual Device] using the corresponding platform

version (and APl Level) and fully test your appiice”. In a purely technological
perspective, we deduce, therefore, that mobile €3%ts bifurcation thanks to interfaces. The
set of API mimic the platform evolution when thigotution refers to replacing or adding
functionalities to the platform. However, in the enging market of mobile platforms, we
observe a relativelagmentationi.e. competing platforms which attempts to previde same
services via competing and incompatible technokgie

3 Complexity at the Organizational Level

3.1 The Diversity of Organizations Supporting Mobile OS Projects

Table 1 gives an overview of the mobile OS markbe decreasing leader — Symbian —
appeared in 1998, from a former PDA OS (EPOC, tBeoDPsion’s handheld devices), via
Symbian Ltd, a firm shared by mobile handset mastufars (Ericsson, Motorola, Nokia and
Psion). from 2 December 2008 to"8November 2010, when Symbian had been released
under open source specifications and collectivevation, via the Symbian Foundation —
which creation was announced on"24une 2008, by Nokia, together with AT&T, LG
Electronics, Motorola, NTT DoCoMo, Samsung, Sonycg&son, ST-NXP Wireless, Texas
Instruments and Vodafone. But, now Symbian is medaigp-house by Nokia under its
complete supervision. The BlackBerry OS is provitdgdResearch In Motion (RIM), a firm
which provides both the BlackBerry smartphone @eddS. RIM has a long experience in
connected mobile devices, since it provided in 1®@5inter@ctive Pager, capable of sending
and receiving text messages through a specifidegisenetwork, Mobitex. Apple launched its
PDA, the Newton, in 1993, but exited the marketl®08, without any real commercial
success. At the same time, Microsoft has beeneactivthe PDA via the Pocket PC and its
OS (Windows CE), since 1996. Microsoft never |dfe tmobile OS market, continuously
improving its Windows CE, known as Window Mobilence 2003. Apple returned to this
market only in 2007, launching the iPhone and & (@S). Comparatively, Android is a fast
growing new entrant, since it is only off' ovember 2007, that thirty-four companies
(including Google) announced their involvementhe tlevelopment of aropen platform for
mobile device® — Android — within a new inter-firm organizatiothe Open Handset
Alliance (OHA).

The mobile OS — compared to the desktop computer @$articular, because it needs
better integration with both the device and the-eser service (Funk, 2001) to give the
easiest access to the embedded mobile servicely,(R@06). Consequently, mobile OS are a
major concern forsystems integratoysi.e. “‘companies that rely on wide and dispersed
networks of suppliers of specialised components @amhbilities, yet maintain broad and
deep in-house capabilitiegBrusoni et al, 2004, p. 5). These system integrators come from

®Source : http://developer.android.com/guide/appéeagi-levels.html
® Source: Open Handset Allianderess Releaseslovember 5, 2007.

different sectors, follow various strategies, aral/éh to coordinate the innovations from
heterogeneous technological fields (Kelly, 2006 uMat al, 2006). Knowing that the degree
of product decomposability depends on the exisdtate of knowledge (Buenstorff, 2005).

2008 2009 2010 Q1 2010 Q2 2010 Q3
Ospfsrgt::g units % units % units % units % units %
Symbian 729335 52.4 | 80878.6| 46.9 | 24 069.8| 44.3 | 25,386.8| 41.2 | 29.480.1] 36.6
BlackBerry OS| 23 149.0 16.6 | 34 346.6| 19.9 | 10 552.6] 19.4 | 11,228.8| 18.2 | 11 908.3| 14.8
Android 6405 | 05 | 67984 | 3.9 | 5214.7| 9.6 | 10,606.1] 17.2 | 20 500.0] 255
iOS (iPhone) | 114175 82 | 24889.8| 144 | 8359.7 | 15.4 | 8,743.0 | 14.2 | 13 484.4] 16.7
V\,(/'Irc‘)%‘l’l‘gs 16498.1| 11.8 | 15027.6| 87 | 3706.0| 6.8 | 3,096.4| 50 | 2247.9| 28
Linux 10662.4| 7.6 | 81235 | 47 | 19939 3.7 | 1,5031| 2.4 | 1697.1| 2.1
Other OSs 40269 20 | 23056 | 1.3 | 4048 | 07 | 1.0848| 1.8 | 12148 15
Total 139 287.9] 100.9 172 373.1] 100.9 54 301.4| 100.4 61 649.1] 100.d 80 532.6| 100.0

Table 1: Worldwide Smartphone Sales to End Users b@perating System (Thousands of Unitg)

Clearly, the mobile OS sponsors, as system integrahave not the same positions in
the system hierarchy. For Apple and RIM, the systet@gration covers all the subsystems:
the OS is developed in-house, respectively 10S Blagkberry OS; it is not available for
competing handset manufacturers; third-party appbos need validation to access their
online application stores, respectively the Appr&tand App World; even some wireless
interfaces are imposed to network operators. Maftognd Nokia, comparatively, perform
sub-level integration. Microsoft does not manufaetinandsets, while Symbian OS was
developed by many handset manufacturers duringymebian Ltd and Foundation era and,
therefore, shipped on their devices. They have alabdation tools for third-party
applications on the Marketplace and OVI. Last baot least, Google perform an indirect
integration of the Android system. In fact, whileetAlliance supports the diffusion and
enhancement of Android, the technical directionsl anird-party validations are given
directly by the Android Open Source Project (AOSRanaged by Google employees only.
So, the AOSP Welcome all uses of the Android source code, biyt Android compatible

devices - as defined and tested by the Android @bhilty Program — may participate in the
Android ecosystet.

3.2 The Organization in the Subsystem Perspective

This description of the system integration withighHlevel of abstraction (handset — OS
— application) put forward the necessity of commatary concepts to go further into the

" Source: GartnePress releases
8 http://source.android.com/fags.html

lower-levels of abstraction and, therefore, inte shibsystems.

We see that mobile OS sponsors are not the onkelstéders of the system. In our
view, this refers to the legal ownership of the poments — i.e. the intellectual property — as a
tool to discriminate the knowledge accessibilityheTproprietary versus open source
strategies define the scope for digital platforrhat modularity encourages more subtle
strategies, via partial licensing. For Bonacceitsal (2006, p. 1094), software firms tend to
hybridize open and proprietary strategy rather thfi@lfow a pure model. This idea is
consistent with West (2003, p. 1279): proprietalgtfprm vendors’ strategy evolves from
fully proprietary to open standards and, then,gerosource, but the strategy is always hybrid
(“opening parts”, “partly open”). A certain numbef reasons encourage these sponsors to
operate this transition: e.g., the market enviromniiid., 2003), developers’ preference (Sen
et al, 2008), users’ involvement in innovation (von Heb@and von Krogh, 2003), project
characteristics (Lerner and Tirole, 2005). At tteame time, the influence of intellectual
propertyvaries with its position in the platform architeeuFor instance, openness at the
platform (core) level provides a good picturecofopetition(Nalebuff and Brandenburger,
1997): cooperation on platform standards, competion complements. These strategies are
possible thanks to “hybrid” open source licenses,cbommercially-based contributions. We
can simplify this question via the conceptopyleft. In line with Pénin (2008), there is both
strongandweak opennegqgopyleft, here) depending on whether the stakedisltlave to ask
permission, or not, to use the code, even if therceo code is open. Consequently, the
definition of the mobile as open or proprietary s done carefully: the trade-off between
open and proprietary licensing is largely at trecdition of the components’ contributor. For
instance, despite its Linux kernel and source @dglability, Android has some proprietary
components, while i0S is clearly proprietary withapen kernel (Darwin).

In the technological perspective, licenses and ogmmces refer to code reuse and,
therefore, they are one part of the organizatitead! of technological interfaces. Meanwhile,
for complex software architecture like OS, the pipte of information hiding (Parnas, 1972;
Baldwin and Clark, 2000) — via interfaces — must flng& into perspective. In fact,
documenting interfaces between third-party digimabdules is a source of knowledge
disclosure, particularly thanks to the SBIK For instance, the cheap access to well
documented SDKs could explain the fast growth oktmaf the online mobile application
stores. This aims to match open source softwarggsy where the ‘no hiding’ principle
allows developers to undertake much more sophtsticsoftware engineering activities, such
as redefining modules and interfaces specificationgsesponse to the emergence of new
interdependencies between separate modules. Tloftes the case in the introduction of
radically new or substantially complex featuressiable projects (Narduzzo and Rossi,

° “Copyleft is a general method for making a programdther work) free, and requiring all modified
and extended versions of the program to be fregedls (Source: http://www.gnu.org/copyleft/copyleft.Him

9 The Software Development Kit gives the main toafsl information for producing applications,
services and contents complementary with the platfo

2003, p. 27). However, not all knowledge is traredbe, qua information (Nelson and
Winter, 1982, chapter 4); it requires a certain am@f translation via a shared codebook, as
well as the skills needed to understand it. Grimaial Torrisi (2001, p. 1427) apply this idea
to the software industry: knowledge iarticulated codified and “unarticulated codifiet!
when, the codebook is, respectively, transparemngnepistemic communities or inside one
epistemic community; and knowledge isinarticulated uncodified when located in
individuals (leaders), organizational routines @ogesses. That is why, even with open
sources, the level of contribution depends on #perence in terms of previous contributions
and past specialisation of the contributors (voadfret al, 2003). Meanwhile, in the case of
industries devoted to multitechnology and multicamgnts products, Brusoset al. (2001,

p. 600) encourage us to discuss the boundarigsisteenic communities, because of tlgap
between what they make and what they Rndwnis gap could explain why Microsoft
managed to make profitable collaborations with Neetwork Operators (MNO), which
have the necessary skills and exercise power all the mobile industry (Evaret al. 2006,

p. 195), in order to improve its mobile OS.

Finally, hierarchic organizations are also desigteetimit fragmentation. For instance,
Tee (2010) reminds us that during the Symbian ledool, cooperation on the Symbian OS
and competition on the user interface (Ul) indueetitagmentation of the system for end-
users. Consequently, Symbian OS and Ul were repiated, when Nokia acquired the full
ownership of Symbian, then directed by an “architex council” after Nokia transferred the
ownership to the Symbian Foundation. This courgibm interesting example of authority
inside open source community, sindde’ Foundation will operate as a meritocracy, with
board and council membership allotted based on rdmtion to the platform*’. In fact,
O’Mahony and Ferraro (2007) show that hierarchidsased on meritocracy — emerge and
evolve inside the open source communities. Meamytidr these communities, Raymond
(1999) puts forward two organizational structut@srarchicalthe Cathedralwhich involves
few or more stakeholders according to the stagesadfware development; and, non-
hierarchical the Bazaar when participation is open to everybody, all time. Equally, the
Google-Android example reminds us that, in the gmes of sponsors, the interaction quality
changes (Shah, 2006; West and O’Mahony, 2008). Maeisely, the platform sponsors face
a “tension between control and openrie@¥est and O’Mahony, 2008, p. 155): thanks to
control, the platform sponsorsaSsure ongoing alignment between their investmerthe
community and related product goalsvhile with opennessthey ‘win greater external
participation and technological adoptibnEqually, they distinguish two types of openness
(ibid., p. 151), in the case of sponsor-based organizat@rchitecturedransparencywhich
“allow[s] to understand what is happeningnd “allow[s] use of the final product, the source
codée and;accessibility which “allow[s] to influence the direction of the commuyhit

1 Source: Foundation website, offline from now on.

3.3 The Mobile OS System as Competing Systems: The Standards
Issue

With such a level of granularity, the organizatfmoviding one platform seems to be a
very baffling nest of decision and interaction meses, performed on a case by case basis.
This view is the opposite of the expectations gfaoiizational platform: i.e., developing and
giving the direction of a core platform, as well gigsing the roadmap and support for the
provision of complements. In concrete terms, fiystem integratorhas to manage the
standards-setting and selection process to prothee technical compatibility enabling
interorganizational coordination (Steinmueller, 2PD@nd, therefore, integration instead of
fragmentation. Consequently, standards-settingnspbex task. For us, standards are the top-
level rules of the interfaces, meaning that theye gglobal rules to shape the interfaces.
Meanwhile, interfaces shape the standards, vianarggonal trade-offs. There is a co-
evolution between technology and standards-setfiugk, 2009). By this way, interfaces-
and standards-setting is the cement that we usakidhe technological and organizational
level of abstraction.

In a nutshell, in Sections 2.2 and 2.3, we haven semv the technological side of
interfaces results from technological interdeperdsn Then, in Section 3.2, we have seen
how the technological side of interfaces has thypes of organizational counterpaftsthe
definition of property rights, the active diffusioof technological knowledge and the
hierarchical validation. Consequently, in this sactive show how the economic and strategic
concerns of the organization stakeholders shape cthevolution and, therefore, the
standardization processes. Put concretely, thelesbrvice (as seen by end-users) “has to
match with a quintuple layer of specifications” i{Be et al. 2009, p. 287): (i) the handset; (ii)
the mobile OS; (iii) the application which runs thervice; (iv) the wireless technology; and,
(v) the operator's mobile system (portals, billisgstem ...). That is why we split the
standardization processes into two categories, hehethey refer to the compatibility
standards among layers inside one single platf@mmto the emergence of standards inside
one layer.

In the first category, we focus on vertical stawlization — in reference to the vertical
integration of the system layer. In this case, rioteieller (2003) uses the term “local
standards”, i.e. those standardisat are unpublicised and used internally as a nseahco-
ordinating and dividing labour among different orgsation$ (ibid., p. 135). In this line, this
is easier to integrate the development processdsostly coupled components, resulting
from modular product architecture (Sanchez and Makp 1996). Equally, standardized
interfaces within the platform help integration atit hierarchical authority, as integration
produces increasing transaction costs when theslstédker community and / or the module

2 1n some extent, these three dimensions come fwendefinition, by Pénin (2008), of aspen
innovation context

guantity grow. This echoes the idea that standardke the validation process easier, by
specifying rules form the beginning. These expligles — known ex ante by the stakeholders
— reduce the hazard to having a contribution repgedty an authoritarian decision, once the
work is already done or advanced. In fact, by dpeg the interfaces, the standards give
implicitly a list of compatible technological compents. Furthermore, dynamically, standards
give a relative inertia to the platform technolagi@hey shape the possible path of evolution
of the platform. Put concretely, fragmentation nappear at one single mobile OS level,
because of its evolutions via cyclical releases &holution of core and custom assets of a
platform produces a compatibility issue at the fptat level: backward and forward
compatibility, i.e. according to the fact that arelatform release is compatible with
functionalities of (respectively) older and new@plcations. This point is ambivalent and
encourages us to put forward some other criticghef vertical standardization strategy.
Hence, in a platform related organization, madpaténtial competitors, this strategy is at the
expense of differentiation. Furthermore, in firmtwerks, for Garud and Kumaraswamy
(1995), the distinction between vertical complementand competitors on the same layer
become blurred because of knowledge sharing. Tdrelatdization process depends also on
stakeholder trade-offs: either they encourage esgilsuto adopt the collective platform or else
their own components.

In the second category, we focus on horizontal dstechzation, via inter-operability
standards shared between platforms for specifierfaylhese standards are largely shared in
consumer electronics and network industries, becaisnetwork externalities. In fact, the
architectural innovation increases the interactibaorganizations from the various layers and,
therefore, modifies the competition structure. @ntelayer, we observe shared or competing
horizontal standards. For instance, the mobilelesselayer has horizontal standards to allow
the interoperability of these networks notwithstagdthe specific mobile network operator
chosen by a customer. Put generally, for some Jspecialized competitors, horizontal
standardization on the other layers is a mean teertteeir entry on these layers easier; this is
a sort of commoditization. For Steinbock (2003)ycsi Nokia had no strong horizontal
advantage on mobile OS, it encouraged collaborationstandards, in order to weaken
competitors who staked everything on horizontalhtetogy. Meanwhile, to weaken
competitors, firms try to encourage their own stadd’ adoption and, therefore, reinforce
their power. This strategy refers to standards waadicularly when a firm uses its installed-
base of customer to impose its standadis factg, in order to prevent the entry of new
competitors. This is different frorde jure standardization when political governments and
institution are the standards setters, like forriabile wireless networks’ standards. Beyond
de facto and de jure, a third form of standardarats interesting in our case: this refers to the
idea that the organizational side of the platforayract as atandard committe@arell and
Saloner, 1988). For instance, Nokia sponsored fhenobile Architecture Initiative (OAl),
which gave birth to the OMA in 2002, by mergingwihe WAP Forum. This organization is
in charge of the definition of mobile standardsesery layer: it is a standard committee.

Equally, since March 2010, the WAC and LiMo havetenh their efforts, merging various
mobile platform projects within an open architeetufhis helps us understand the platform
involvement of mobile network operators (MNO). bcf, via the WAC which an association
of the main international MNOs and the technicgprt of LiMo (an open source Linux-
based mobile OS), they aim to produce an opengptaths open standard in order to remove
fragmentation, which is detrimental for their reuen

In our view, by rallying multitechnological verticknowledge and adopting horizontal
standards, the organizational side of the platfoam produce collectively adopted standards
and, thereby, provide system integration consigdtenizontally, vertically and evolutionarily.
For Meyer and Seliger (1998, p. 62), it “lies aremevmore important market advantage
enabled by platform thinking and execution. If teeloper builds and clearly communicates
methods or techniques by which other companiesndividuals can build modules that
operate in or on the underlying platform, it hasated the opportunity to become the standard
or basis of large-scale innovation”. This strateggy rely on the SDK, particularly if this one
is shared and produce inter-operability betweetf@las. However, in a previous paper, we
had performed a case study of mobile OS, focusingthmse provided by open source
consortia (i.e. Android, Symbian by the Foundatao Linux Mobile, aka LiMo). The results
had shown that the consortia leaders overtly wéaafgym integrity by means of vertical
cooperation. However: (i) the only tool to prevémigmentation is the hierarchical selection
for contribution; (ii) the legal structure authawfree riding; (iii) sectoral concerns exhibit a
preference for openness in term of “free beer’eathan “free speech”. Consequently, this
does not guarantee the emergence of collectivelatds within the platform. Equally, about
the horizontal standardization, strategic concenthe firm level may outweigh collective
concern at the platform or market levels. Hence, aglatform produced collectively by
several firms, the standardization (or not) stnateglies mainly on the stakeholder opinion
about the revenue source. When we have studiedetimological side, it was relatively
consistent to use the fitness concept as a reaédalimension, in order to sketch the ability
that a set of components has to fit into a teclgiodd environment, given their
interdependences. However, when a firm estimateyatue of its component as well as the
value of the platform itself, economic concerns rbayhighly diverging among stakeholders.
Even the definition of “value” differs: it does noécessarily refer directly to incomes, but to
indirect incomes as an installed base of users;ulmers' corporate image and so on.

4 Discussion: Some Implications for Computational
Experiments

At this stage of our analysis, we have to artiauldte set of proposed concepts and
hypotheses within a formal system, in order to enpént this system in simulation and
perform computational experiments. Besides the grgwse of computation in economics
and, more generally, in social sciences, we drawesparallel with the use of computation in

computer science (via the paradigm of Evolution@gmputation, EC) and in engineering
(via the evolutionary design). For Kicinget al. (1995, pp. 4-5), évolutionary design is a
branch of EC that integrates ideas from computelersze (evolutionary algorithms),
engineering (design science) and evolutionary Ilgglo(natural selection) to solve
engineering design problefs For them, the three main issues in applying EAs
[Evolutionary Algorithms] to an engineering design problem are: [1] selecti@p
appropriate representation for engineering desigi3;defining efficient genetic operators;
[3] providing an adequate evaluation function fostienating the “fitness” of generated
solutions (points in the search spdcél/e refer to this sequence to organize the ideas.

4.1 Towards an Appropriate Representation

In line with Le Massoret al. (2009, p. 290), we consider a general frameworkrevte
collaborative process of platform design can adiudéle itself a specific platform; we shall
call it a ‘platform for platform desigri. Hence, there is a real interest in analysings¢he
processes at the systemic level, from the veryesarstage, all the more so as the literature
has only just started to address this questiorMassoret al, 2009; Mauleet al, 2006; West
and Wood, 2008). In other words, for Henderson @laak (1990),architectural innovation
requires reorganization and the acquisition of Kiedge by firms. That is why we use the
“platform for platform design” concept as an abdin to represent the organisation as an
evolving entity. In some extent, it echoes the espntation used by Brusoni and Prencipe
(2009) where the product, organization and knowdea@ represented via different domains /
planes, which are not matching perfectly.

Hence, in our approach, unlike the NK models, wesater that two planes are useful to
represent separately the product and organizagoardics. Then, we have show before, how
the interface may be used to connect these twaep)actually with a third plane. The planes
have the same dimensions, i.e. technological ctearsiics and service characteristics. In
order to cope with the definitions of core and pleeral / complement / custom components,
we cannot accept the traditional representatiormoftiularity by a one-to-one mapping
between service and technology. In fact, each engi connected with at least one core and
one peripheral technological characteristic, ieehhological characteristics mapping with
(respectively) several or one service characterisihen, the interface plane connect the
modules (i.e. non-overlapping sets of technologaral service characteristics); Finally, the
organization plane is cut to match the technoldgacal service characteristics, as they are
divided among the stakeholder of the organizatiorterms of division of labour on the
platform.

4.2 The Genetic Operators of an Architectural Innovation

In this case, the genetic operators are shapedhdarichitectural innovation. Hence,
unlike the operators analysed by Baldwin and C{2€00) which refers to the modularization
of components, we are interested be operators whimthfy the architecture with relatively

stable components. Consequently, genetic operaterselated with the organisational side of
interface- and standards-setting. That is to sa th our representation, the change is
inseparable from the knowledge acquisition anduditin; this has various levels, from the
interfaces between components to the product shapamdards. This is the central part of the
model and a place for several implementations @tcttmputational experiments.

This part of the model lies on the idea that, fgcan architectural innovation, the
organization is mainly focused on architecturat@sy (Henderson and Clark, 1990), since
the services offered by components are already Kabweast by the component owner). Put
concretely, the organization begins to work witte tthree given planes. The initial
architecture does not match perfectly the “perfecthitecture, i.e. the interface architecture
which offers the best results at the technolodgeatl. According to its own architecture (in
terms of interface’s organizational counterpartgsistbn of labour among firms), the
organization try to improve the product architeetby testing new interfaces. Put concretely,
one explore the product architecture, in order iscaver potential interfaces which may
improved the service characteristics of the platf¢this interfaces are defined ex ante by the
simulation model, but the organization as a whalesthot know where they are).

In this line, several implementations and calilmasi may be performed: e.g. the ability
to experiment in parallel or sequentially; variolevels of labour division (one single
integrated firm, sponsor-based organization, comtywh firms ...); a focus on reducing the
amount of technology or on the service value; wexipreference for knowledge disclosure;
and so on. For instance, an interesting issue gudy the link between the location of the
interface into the product architecture, compaedgiwith the structure of the organization at
this level, i.e. this refer to test the idea that wbserve better results when highest-level
interdependences are managed by highest-levelratteg. Consequently, we imagine an
operator related to move the position of a techgwlon the hierarchy by changing the
interfaces: for core components what is the eti@atespectively, put the component up in the
hierarchy; improve its connection within a singldsystem; give up this component?

These implementations refer to the first step ohgotational experiments, when we
focus on one single platform. Consequently, thedaedization process is only vertical via
the attempt to fix some interfaces technologicalh organizationally. The next step is of
course the study of a market made up of severapeting platforms which have eventually
to choose for shared horizontal standards, notaip te promote their standards to the
competitors. Another step is to analyse the increale@nnovations at the component level,
resulting from the new opportunities given by thlreh#ectural innovation. However, these
implementations are not supported theoreticallyhis paper and, therefore, call for further
formalizations.

4.3 Merging Various Fitness Representations

The modelling strategy based on fithess value agrthin index of decision has been

recently criticized, because — unlike biologicabamisms — economic organizations have
other concerns. That is to say, we cannot use dhee sndex to compute a success on the
organizational side and on the technological dyethis way, some recent simulation models

(e.g. Ciarli et al., 2008; Marengo and Valente, @0fbcus on model of markets, where the

supplying organizations build their decisions relyag the effect on the demand side. Clearly,
this option is interesting for our project eventpalHowever, we assume that some

experiments have first to be implemented on the@lsugide, in order to understand better the
whole behaviour of this architectural explorationdasl.

Consequently, the aim of this model is not to paedpolicy implications according to
the “best” organizational architecture to cope watichitectural innovation. Conversely, we
focus on the “costs of experimentations” involveg \marious organizational architecture
exploring various technological architecture. Thessts are diverse: e.g. the level of
necessary knowledge disclosure, the time spentes&mhr a good level of architectural
innovation, the probability to be locked into syftimal solutions and so on. For instance, a
product platform managed by a single proprietarn fis prone to reduce its technological
opportunities because of the lack of external cecidized knowledge. Meanwhile, this
structure may benefit from authority, while commntynbased platform may suffer from
fragmentation, divergent decisions and so on.

Put concretely, the stakeholders within the orgaion compute some potential fitness,
according to their knowledge of the platform arebitire. They focus either on improving the
platform fitness as much as possible, or on imprvheir piece of the platform only. By this
way, we observe the “costs” related to these imgmments via the indexes proposed above.

5 Conclusion

Consequently, thanks to this model, we aim to tesying strategies in terms of
standardization and knowledge accessibility (relatgth various levels of organizational
integration) according to the involvement of firtesreduce the technological complexity of
the system (i.e., increasing the modularity of@&). Hence, one contribution of this paper is
the articulation of technologies and functionaditia an applied perspective of complexity, in
order to correspond better with the architecturigwvfollowed by mobile OS projects’
stakeholders. The main contribution is about thiective construction of the architecture
linking these technologies and functionalities. doncrete words, we aim to show the
opportunities and limits of integrated and de-ind¢gd organizations, according to their
involvement in sharing knowledge (and, consequemdghnologies) vertically (i.e. sharing
functionalities) and horizontally (i.e. adoptingastiards and / or sharing interfaces for the
system core).

References:

ALTENBERG, L. (1994), “Evolving better representats through selective genome growtfithe 1st IEEE
Conference on Evolutionary Computatiqap. 182-187

ALTENBERG, L. (2005), “Modularity in evolution: soelow-level questions”, in Callebaut, W., Rasskin-
Gutman, D. (Eds)Modularity: Understanding the Development and Etioluof Natural Complex Systems
The MIT Press, pp. 99-128

ANTONELLI, C. (2005), “Models of knowledge and sgsts of governance”Journal of Institutional
Economicsvol. 1 (1), pp. 51-73

BALDWIN, C. Y., CLARK, K. (2000),Design Rules - The Power of ModulariIT Press, Cambridge

BALDWIN, C. Y., CLARK, K. (2006), “The architecturef participation: does code architecture mitigaee
riding in the open source development modea\®inagement Sciengceol. 52 (7), pp. 1116-1127

BALDWIN, C. Y., WOODARD, C. J. (2009), “The architwire of platforms: a unified view”, in GAWER, A.
(Ed.),Platforms, Markets and InnovatipEdward Elgar, Cheltenham, pp. 19-44

BLUME, M., APPEL, A. W. (1999), “Hierarchical modariity”, ACM Transactions on Programming Languages
and Systemwol. 21 (4), pp. 813-847

BONACCORSI, A., GIANNANGELI, S., ROSSI, C. (2006)ntry strategies under competing standards:
Hybrid business models in the open source softwatestry”, Management Sciengcgol. 52 (7), pp. 1085-
1098

BRUSONI, S., PRENCIPE, A., PAVITT, K. (2001), « Knledge specialization, organizational coupling, and
the boundaries of the firm: why do firms know mdhan they make?’Administrative Science Quarterly
vol. 46 (4), pp. 597-621

BRUSONI, S., MARENGO, L., PRENCIPE, A., VALENTE, M2004), “The value and costs of modularity: a
cognitive perspective’SPRU Electronic Working Paper Seri@$123

BRUSONI, S., PRENCIPE, A. (2009), “Design rules fdatform leaders”, in GAWER, A. (Ed.Rlatforms,
Markets and InnovatigrEdward Elgar, Cheltenham, pp. 306-321

BRUSONI, S., FONTANA, R. (2011), “Incumbents’ skgies for platform competition — Shaping the
boundaries of creative destruction”, in DE LISO,, NNEONCINI, R. (Eds), Internationalization,
Technological Change and the Theory of the FiRautledge, pp. 66-88

BUENSTORF, G. (2005), “Sequential production, madity and technological changeStructural Change
and Economic Dynamicsol. 16, pp. 221-241

CIARLI, T., LEONCINI, R.,, MONTRESOR, S., VALENTE, M2008), “Technological change and the vertical
organization of industriesJournal of Evolutionary Economicsol. 18, pp. 367-387

DANILOVIC, M., BROWNING, T.R. (2007), “Managing coptex product development projects with design
structure matrices and domain mapping matriceg&rnational Journal of Project Managemenmbl. 25 (3),
pp. 300-314

DOSI, G., LEVINTHAL, D. A, MARENGO, L. (2003), “Bdging contested terrain: linking incentive-based
and learning perspectives on organizational evaiitiindustrial and Corporate Changesol. 12 (2), pp.
413-436

ENGLER, D.R., KAASHOEK, M.F., O'TOOLE, J. Jr (1995Exokernel: An operating system architecture for
application-level resource managememtpceedings of the fifteenth ACM symposium on Qpeyaystems
principles pp. 251-266

ETHIRAJ, S.K., LEVINTHAL, D. (2002), “Search for ehmitecture in complex worlds: an evolutionary
perspective on modularity and the emergence of damidesigns"Working Paper

ETHIRAJ, S.K., LEVINTHAL, D. (2004), “Modularity ash innovation in complex systemsKManagement
Sciencevol. 50 (2), pp. 159-173

EVANS, D.S, HAGIU, A., SCHMALENSEE, R. (2006)nvisible Engines — How Software Platforms Drive
Innovation and Transform Industriehe MIT Press, Cambridge

FARRELL, J., SALONER, G. (1988), “Coordination tlugh committees and market®RAND Journal of
Economicsvol. 19 (2), pp. 235-252

FEIJOO, C., MAGHIROS, I., ABADIE, F., GOMEZ-BARROSQ. L. (2009), “Exploring a heterogeneous and
fragmented digital ecosystem: Mobile contefJematics and Informaticsol. 26 (3), pp. 282-292

FRENKEN, K. (2006))Jnnovation, Evolution and Complexity ThepBdward Elgar, Cheltenham

FUNK, J. L. (2001),The Mobile Internet: How Japan Dialed Up and thestM@isconnectedlSI publications,
Hong Kong

FUNK, J.L. (2009), “The co-evolution of technolognd methods of standard setting: the case of thaleno
phone industry”JJournal of Evolutionary Economicgol. 19 (1), pp. 73-93

GANCO, M., HOETKER, G. (2009), “NK modeling methddgy in the strategy literature: bounded searcla on
rugged landscape”, in BERGH, D., KETCHEN, D. (edResearchMethodology in Strategy and
ManagementEmerald Group Publishing, Ltd.

GARUD, R., KUMARASWAMY, A. (1995), “Technological radl organizational designs for realizing
economies of substitutionJtrategic Management Journabl. 16 (1), pp. 93-109

GAWER, A. (Edited by) (2009Rlatforms, Markets and InnovatipEdward Elgar, Cheltenham

GRIMALDI, R., TORRISI, S. (2001), “Codified-tacitnd general-specific knowledge in the division didar
among firms - A study of the software industriggsearch Poligyol. 30, pp. 1425-1442

HENDERSON, R.M., CLARK, K.B. (1990), “Architectur@hnovation: the reconfiguration of existing protiuc
technology and the failure of established firmsdministrative Science Quarteylyol. 35, pp. 9-30

KAUFFMAN, S. A. (1989), “Adaptation on rugged fitee landscapest,ectures in the Sciences of Complexity
vol. 1, pp. 527-618

KELLY, J. (2006), “Design strategies for future waliess content”, in GROEBEL, J., NOAM, E. M.,
FELDMANN, V., (Eds.),Mobile Media - Content and Services for Wirelessn@wnications Lawrence
Erlbaum, Mahwah, pp. 69-85

KICINGER, R., ARCISZEWSKI, T., JONG, K.D. (2005)EVolutionary computation and structural design: A
survey of the state-of-the-ariComputers & Structuresol. 83 (23-24), pp. 1943-1978

LANCASTER, K.J. (1966), “A new approach to consurtieory”, Journal of Political Economyvol. 14, pp.
133-156

LANGLOIS, R.N (1999), “Modularity in technology, ganization, and society'Department of Economics
Working Paper Seriesol. 5

LE MASSON, P., WEIL, B., HATCHUEL, A. (2009), “Platrms for the design of platforms: collaborating in
the unknown”, in GAWER, A. (Ed.)Platforms, Markets and InnovatiprEdward Elgar, Cheltenham,
pp. 273-305

LERNER, J., TIROLE, J. (2005), “The scope of openrse licensing”,The Journal of Law, Economics, &
Organization vol. 21 (1)

LUER, C., ROSENBLUM, D. S., VAN DER HOEK, A. (2001Yhe evolution of software evolvability”,
Proceedings of International Workshop on the Pptes of Software Evolutio/ienna, Austria, pp. 131—
134

MACCORMACK, A., VERGANTI, R. (2003), “Managing thseources of uncertainty: Matching process and
context in software developmengurnal of Product Innovation Managemgwol. 20 (3), pp. 217-232

MACCORMACK, A., RUSNAK, J., BALDWIN, C. Y. (2006);Exploring the structure of complex software
designs: an empirical study of open source and rigigpy code”, Management Sciengesol. 52 (7),
pp. 1015-1030

MACCORMACK, A., RUSNAK, J., BALDWIN, C.Y. (2008), Exploring the duality between product and
organizational architectures: A test of the mimgrhypothesis”Working PaperHarvard Business School,
08-039

MAULA, M., KEIL, T., SALMENKAITA, J.-P. (2006), “Open innovation in systemic innovation contexts”, in
CHESBROUGH, H., VANHAVERBEKE, W., WEST, J. (Edsphpen Innovation: Researching a New
Paradigm Oxford University Press, Oxford, pp. 241-257

MARENGO, L., VALENTE, M. (2010), “Industry dynamicgr complex product spaces: An evolutionary
model”, Structural Change and Economic Dynamiesl. 21 (1), pp. 5-16

MARENGO, L., DOSI, G. (2005), “Division of laborrganizational coordination and market mechanisms in
collective problem-solving”Journal of Economic Behavior & Organizatiovol. 58 (2), pp. 303-326

MEYER, M. H., SELIGER, R. (1998), “Product platfosmin software development'Sloan Management

Reviewvol. 40 (1), pp. 61-74

MURMANN, J.P., FRENKEN, K (2006), “Toward a systetmaframework for research on dominant designs,
technological innovations, and industrial chang®gsearch Poligyvol. 35 (7), pp. 925-952

NALEBUFF, B. J., BRANDENBURGER, A. M. (1997%0-opetition Harper Collins Business, London

NARDUZZO, A., ROSSI, A. (2003), “Modular design atitk development of complex artefact lesson frae fr
open source softwareQuaderni DISA

NELSON, R. R., WINTER, S. (1982An Evolutionary Theory of Economic Chandée Belknap Press of
Harvard University Press, Cambridge

O'MAHONY, S., FERRARO, F. (2007), “The emergence gifvernance in an open source community”,
Academy of Management Jourpadl. 50 (5), pp. 1079-1106

PARNAS, D.L. (1972), “On the criteria to be useddiecomposing systems into moduleSgmmunications of
the ACM vol. 15 (12), pp. 1053-1058

PENIN, J. (2008), “More open than open innovati®e&?hinking the concept of openness in innovatiodiss”,
Documents de Travaih® 18, BETA (working paper)

RAYMOND, E. (2001),The Cathedral and The Bazaar: Musings on Linux @pen Source by an Accidental
Revolutionary O’Reilly Media, Sebastopol (CA)

RIVKIN, J.W., SIGGELKOW, N. (2003), “Balancing Sedwr and Stability: Interdependencies among Elements
Organizational Design’Management Sciengeol. 49 (3), pp. 290-311

RIVKIN, J.W., SIGGELKOW, N. (2007), “Patterned iméetions in complex systems: Implications for
exploration”,Management Sciengceol. 53 (7), pp. 1068-1085

SANCHEZ, R. (1995), “Strategic flexibility in producompetition”,Strategic Management Journadol. 16 (1),
pp. 135-159

SANCHEZ, R., MAHONEY, J.T. (1996), “Modularity, Btéility, and Knowledge Management in Product and
Organization Design Strategic Management Journafol. 17, pp. 63-76

SAVIOTTI, P.P., METCALFE, J.S. (1984), “A theoredicapproach to the construction of technologicapou
indicators”, Research Policy, vol. 13, pp. 141-151

SEN, R., SUBRAMANIAM, C., NELSON, M. L. (2008), “Derminants of the choice of open source software
license”,Journal of Management Information Systerd. 25 (3), pp. 207-239

SHAH, S. K. (2006), “Mativation, governance, ance thiability of hybrid forms in open source software
development”’Management Sciengeol. 52 (7), pp. 1000-1014

SIGGELKOW, N., LEVINTHAL, D. (2003), “Temporarily idide to conquer: centralized, decentralized, and
reintregated organizational approaches to exptmratnd adaptation’Organization Sciencevol. 14,
pp. 650-669

SIMON, H. A. (1962), “The architecture of complagXit Proceedings of the American Philosophical Society
vol. 106 (6), pp. 467-482

STEINBOCK, D. (2003)Wireless Horizon: Strategy and Competition in therMivide Mobile Marketplace
Amacom Books, New York

STEINMULLER, W. E. (2003), “The role of technicatasdards in coordinating the division of labour in
complex system industries”, in PRENCIPE, A., DAVIEA., HOBDAY, M., The Business Of Systems
Integration Oxford University Press, Oxford, pp. 133-152

TEE, R. (2010), “Coordinating technological collaéiion in fast changing environments: understanding
interplay between product and organizational aechitre”,DRUID Summer Conference 2010

VALENTE, M. (2008), “Pseudo-NK: an enhanced modeta@mplexity”, LEM Papers Seriewol. 26

VON HIPPEL, E., VON KROGH, G. (2003), “Open sourseftware and the ‘private-collective’ innovation
model: issues for organization sciend®tganization Sciengevol. 14 (2), pp. 208-223

VON KROGH, G., SPAETH, S., LAKHANI, K.R. (2003), ‘@nmunity, joining, and specialization in open
source software innovation: a case studR@search Poligyol. 32 (7), pp. 1217-1241

VON KROGH, G., STUERMER, M., GEIPEL, M., SPAETH,, $IAEFLIGER, S. (2009), “How component
dependencies predict change in complex technolgdiesid Summer Conference 2009

WEST, J. (2003), “How open is open enough? Meldimgprietary and open source platform strategies”,
Research Policyol. 32, pp. 1259-1285

WEST, J., OMAHONY, S. (2008), “The Role of parpation architecture in growing sponsored open sourc
communities” Industry and Innovatignvol. 15 (2), pp. 145-168

WINTER, S.G., CATTANI, G., DORSCH, A. (2007), “Thealue of moderate obsession: Insights from a new
model of organizational searciDrganization Sciencevol. 18 (3), pp. 403-419

WOODARD, C. J. (2008), “Platform competition in d&j systems: architectural control and value ntigre,
Working Paper

YAKOB, R., TELL, F. (2007), “Managing near decompbsity in complex platform development projects”,
International Journal of Technology IntelligencedaRlanning vol. 3 (4), pp. 387-407

YU, L., RAMASWAMY, S. (2006), “Software and biologal evolvability: a comparison using key propefties
Second International IEEE Workshop on Software &lulity, pp. 82-88

