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ABSTRACT 

The literature has pointed different causes to explain the productivity gap between Europe and 

United States in the last decades. This paper tests the hypothesis that the lower European productivity 

performance in comparison with the US can be explained not only by a lower level of corporate R&D 

investment, but also by a lower capacity to translate R&D investment into productivity gains.  

The proposed microeconometric estimates are based on a unique longitudinal database covering the 

period 1990-2008 and comprising 1,809 US and European companies for a total of 16,079 observations.  

Consistently with previous literature, we found robust evidence of a significant impact of R&D on 

productivity; however – using different estimation techniques - the R&D coefficients for the US firms 

always turn out to be significantly higher. 

To see to what extent these transatlantic differences may be related to the different sectoral structures 

in the US and the EU, we differentiated the analysis by sectors. It resulted that both in manufacturing, 

services and high-tech sectors US firms are more efficient in translating their R&D investments into 

productivity increases. 
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1. Introduction: aggregate trends and motivation. 

 

The literature has pointed different causes as the main explanations of the productivity gap 

between US and Europe in the last decades. Among others, the quality of human capital (Gu et al., 

2002), the rigidity of the European labour markets (Gordon and Dew-Becker, 2005; Gomez-

Salvador et al., 2006), the role and diffusion of ICTs (Wilson, 2009), the importance of new 

managerial practices and organizational investments (Gu and Wang, 2004; Bloom et al., 2005; 

Crespi et al., 2007) and the endowment of capital appeared to be the most relevant ones.  

However, most of these explanations can be related to a revealed technological disadvantage 

of the EU, ultimately constraining the demand for human capital, ICT diffusion, innovative 

organizational and management practices and the diffusion of innovation through embodied 

technology in new capital formation. Both at the aggregate and the microeconomic level, R&D 

expenditures are a good proxy of technological investment. 

Since the gap in corporate R&D investment can be seen as the main culprit of the European 

delay in terms of productivity growth in comparison with the US (see O’Mahony and van Ark, 

2003; Blanchard, 2004),  it is not surprising that for the last decade the increase of R&D investment 

has been the main target of European policy, as it was obvious in the “Lisbon Agenda”, the 

ambitious targets of which were recently confirmed and widen in the “Europe 2020 – Innovation 

Union Initiative” strategies (see European Commission, 2002, 2008, 2010).  

However, the hypothesis that will be tested in this paper is that the lower European 

productivity performance in comparison with the US can be explained not only by a lower level of 

corporate R&D investment, but also by a lower capacity to translate R&D investment into 

productivity gains.  

As can be seen in Fig. 1, average annual labour productivity growth (measured as GDP per 

hour worked), in the US accelerated from 1.2% in the 1973-95 period to 2.3% in the 1996-06 period 

(see van Ark et al., 2008); conversely, in the EU15 labour productivity growth declined from 2.4% 

in the former period to 1.5% in the latter one (resulting in the trends shown in Fig. 1). Hence, the 

labour productivity slowdown in EU15 since the ‘90s has reversed what was once thought as a 

long-term pattern of convergence. 

While, during the ‘80s and the first half of the ‘90s, most studies found little or no evidence 

of a significant contribution of ICTs on productivity growth (e.g. Oliner and Sichel, 1994; Siegel 

and Griliches, 1992; Berndt and Morrison, 1995), more recently most scholars agree that the spread 

of ICT technologies has been positively associated with conventional measures of productivity and 
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that - to explain the transatlantic productivity gap - one has to primarily take into account the R&D 

and innovation divide which has emerged between the two sides of the Atlantic in the last fifteen 

years  (see Oliner and Sichel, 2000; Daveri, 2002; Timmer and van Ark., 2005; Crespi and Pianta, 

2008). Moreover, the dynamics in the industries have influenced the productivity levels: in the 

second half of the ‘90s there was a burst of higher productivity in ICT producer industries 

(Jorgenson et al., 2008), while in the ’00 there was also a productivity surge in user industries, 

including market services such as large-scale retailing and the financial and business services (see 

Triplett and Bosworth, 2004; Bosworth and Triplett, 2007; Jorgenson et al., 2003, 2005, 2008). 

Indeed, these trends linked to the spread of new technologies were more marked and accelerated in 

the US than in the EU (see Jorgenson et al., 2005, Timmer et al., 2010) resulting into a widening 

gap in the Total Factor Productivity (TFP) trends (see Fig. 2; see also Corrado et al., 2007; van Ark 

et al., 2008; McMorrow et al., 2009; Timmer et al., 2010). 

 

 

Fig. 1: Labour productivity growth in the US and the EU15: 1990-2008 
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Source: OECD (OECD Statistical Extracts: http://stats.oecd.org) 
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In turn, R&D expenditures are the core investments originating ICT diffusion and 

innovation in general and – not surprisingly - have been demonstrated to play an important role in 

explaining the productivity differentials within the industrialised countries in the last decades (see 

Oliner and Sichel, 1994, 2000; Jorgenson and Stiroh, 2000; Gordon, 2000; Stiroh, 2002; Turner and 

Boulhol, 2008; Wilson, 2009). Indeed, - as can be seen in Fig. 3 (GERD = Gross Domestic 

Expenditure on R&D
1
) – the EU has persistently invested around the 70% of the US economy all 

over the last two decades as far as the total private and public expenditures in R&D are concerned. 

 

 

Fig. 2: TFP growth in the US and the EU15: 1990-2004 
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Source: Timmer, M.P. et al., 2003, Appendix Tables, updated June 2005 

 

 

 

 

 

 

                                                 
1
 GERD = BERD (Business Enterprise Expenditure on R&D) + HERD (Higher Education Expenditure on R&D) + 

GOVERD (Government Expenditure on R&D) + PNPRD (Private Non-profit Expenditure on R&D). 
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Fig. 3: GERD/GDP in the US and in the EU15: 1990-2007 
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Source: OECD - Main Science and Technology Indicators (2009 edition) 

 

 

In particular, the role of private R&D investment by corporate firms (Business Enterprise 

Expenditure on R&D: BERD) has been recognised as a fundamental driver for productivity growth 

both at the macro and microeconomic level (see Baumol, 2002; Jones, 2002). In this respect, the 

EU15 has lagged considerably and persistently behind the US, even more strikingly than in terms of 

total R&D (see Fig. 4).   
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Fig. 4: Private R&D (BERD)/GDP in the US and in the EU15: 1990-2007 
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Source: OECD – Main Science and Technology Indicators (2009 edition) 

 

 

Therefore, the EU underinvestment in total R&D and particularly in BERD might be 

considered one of the main determinants of the productivity transatlantic gap. As briefly mentioned 

above, increasing R&D investment was the rationale behind the “Lisbon agenda 2000” to make 

Europe the most dynamic knowledge economy in the world by 2010 and of the more specific 

“Barcelona target” which - two years later - committed the EU to reach the objective of an 

R&D/GDP level of 3%, two thirds of which accounted for BERD (European Council, 2002; 

European Commission, 2002). Consistently, the new agenda Europe 2020 with the recent 

“Innovation Union”  initiative advocates for a boost in R&D to increase the competitiveness of the 

European private sector (European Commission, 2010). 

However - turning our attention to the microeconomic foundations of the aggregate trends 

discussed so far - the overall European productivity delay can be explained not only by a lower 

level of total and private R&D investment, but also by a lower capacity to translate R&D 

investment into productivity gains. With regard to the latter explanation, the European economies 

may be still affected by a sort of Solow's (1987) paradox, i.e. by a difficulty to translate their own 

investments in technology into increases in productivity.  
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This will be the major hypothesis investigated in this microeconometric study; in fact, it 

might be well the case that European economies not only invest less R&D, but also get less from 

their R&D investment because of a lower R&D-productivity elasticity in the EU compared with the 

US.  

However, previous literature has shown that the R&D-productivity link is positive and 

significant at the microeconomic level, but also that this relationship is stronger in the high-tech 

sectors. Thus, it might be the case that the EU industrial structure (disproportionally characterised 

by traditional, middle and low-tech sectors) implies a lower capacity to translate R&D efforts in 

productivity gains (structural effect; see Mathieu and van Pottelsberghe de la Potterie, 2008). By 

the same token, previous studies disaggregated by industrial sectors suggest a similar European 

disadvantage – compared with the US - in ICT-intensive using services such as wholesale and retail 

trade and financial sectors (O’Mahony and van Ark, 2003; Gordon, 2004)
2
.  

However – in contrast with an explanation only pointing to the differences in the sectoral 

structure of the two economies - it might be also the case that (even within the same sectors and 

including both high-tech manufacturing and services) European firms would reveal a lower capacity 

of translating R&D investments into productivity gains. If such will be the case in terms of the 

following empirical results, there will be support for the so-called intrinsic effect (see Erken and van 

Es, 2007), that is a structural difficulty of European firms in achieving productivity gains, 

independently from the sectors considered. 

 

2. Previous microeconometric evidence  

 

With respect to the microeconomic evidence on the subject, Zvi Griliches (1979) started a 

flourishing literature devoted to investigate the relationship between R&D and productivity at the 

firm and sectoral level. On the whole, this microeconometric literature has found robust evidence of 

a positive and significant impact of R&D on productivity at the firm level. In previous studies, the 

estimated overall elasticity of productivity in respect to R&D turned out positive, statistically 

significant and with a magnitude - depending on the data and the adopted econometric methodology 

- ranging from 0.05 to 0.25 (for comprehensive surveys, see Mairesse and Sassenou, 1991; 

Griliches 1995 and 2000; Mairesse and Mohnen, 2001). 

                                                 
2
 As Jorgenson et al. (2005) note, the enormous heterogeneity of productivity growth across industries means 

that analysts should focus on industry-level detail in order to understand the origins of US growth resurgence compared 

with the EU slowdown..  
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It is interesting to note that the consensus about the existence of a positive and significant 

impact of R&D on productivity stands on different studies using different proxies for productivity 

according to the data available: labour productivity measured as the ratio between value added and 

employment; labour productivity as the ratio between value added and hours worked; total factor 

productivity; Solow’s residual; etc. (see, for instance, Hall and Mairesse 1995; Klette and Kortum, 

2004; Janz et al., 2004; Lööf and Heshmati, 2006; Rogers, 2006; Heshmati and Kim, 2011). Hence, 

the legacy of the previous microeconometric literature is clear in indicating the role of R&D in 

enhancing productivity at the firm level. 

However, the intensity of the R&D-productivity relationship may widely vary across the 

different economic sectors; since technological opportunities and appropriability conditions are so 

different across sectors (see Freeman, 1982; Pavitt, 1984; Winter, 1984; Aghion and Howitt, 1996; 

Dosi, 1997; Greenhalgh et al., 2001; Malerba, 2004), they may involve substantial differences in 

the specific sectoral R&D-productivity links. Indeed, previous sectoral studies clearly suggest a 

greater impact of R&D investment on productivity in the high-tech sectors rather than in the low-

tech ones. 

Examples are Griliches and Mairesse (1982) and Cuneo and Mairesse (1983), who 

performed two companion studies - using French and US microdata - finding that the impact of 

R&D on productivity for scientific firms (elasticity equal to 0.20) was significantly greater than for 

other firms (0.10). 

By the same token, Verspagen (1995) carried out a multi-country study, testing the impact 

of R&D expenditures and singling out three macro sectors: high-tech, medium-tech and low-tech, 

according to the OECD classification (Hatzichronoglou, 1997). The major finding of his study was 

that the impact of R&D was significant and positive only in high-tech sectors, while for medium 

and low-tech sectors no significant effects could be found.  

Using the methodology set up by Hall and Mairesse (1995), Harhoff (1998) studied the 

R&D/productivity link in German manufacturing firms and found a significant impact ranging from 

0.125 and 0.176 for the high-tech firms, while for the remaining firms the R&D elasticity resulted 

either not significant or significantly lower (ranging from 0.090 to 0.096). 

Rincon and Vecchi (2003) also used a Cobb–Douglas framework in dealing with micro-data 

extracted from the Compustat database over the time period 1991–2001. They found that R&D-

reporting firms were more productive than their non-R&D reporting counterparts throughout the 

entire time period. However, the positive impact of R&D expenditures turned out to be statistically 

significant both in manufacturing and services in the US, but only in manufacturing in the main 
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three European countries (Germany, France and the UK). Their estimated significant elasticities 

ranged from 0.15 to 0.20. 

Dealing with Taiwanese data, Tsai and Wang (2004) found that R&D investment had a 

significant and positive impact on the growth of a firm’s productivity (with an average elasticity 

equal to 0.18). However, this impact was much greater for high-tech firms (0.3) than for other firms 

(0.07).  

Finally, Ortega-Argilés et al. (2010) looked at the top 577 EU R&D investors and found that 

the R&D-productivity coefficient increased monotonically moving from the low-tech to the 

medium-high and high-tech sectors, ranging from a minimum of 0.03/0.05 to a maximum of 

0.14/0.17.  

On the whole, previous microeconometric studies – using different datasets across different 

countries - seem to suggest a greater impact of R&D investments on firm productivity in the high-

tech sectors rather than in the low-tech ones. 

However, R&D is not the sole investment determinant in explaining firm productivity gains: 

while the R&D input is capturing that portion of technological change which is related to the 

disembodied new knowledge, gross investment is an alternative innovative input capturing the new 

knowledge embodied in physical capital, mainly machinery introduced through additional 

investments or simply through scrapping.  

This second input represents the so-called embodied technological change, with his great 

potential to positively affect productivity growth. The embodied nature of technological progress 

and the effects related to its spread in the economy were originally discussed by Salter (1960) who 

underlined that technological progress might be incorporated in new vintages of capital introduced 

either through additional investment or simply by scrapping
3
. More recently, the role of capital 

accumulation in fostering productivity growth and economic development has been recognised by 

growth theorists (see Hulten, 1992; Greenwood et al., 1997; Hercowitz, 1998; Abowd et al., 2007; 

Wilson, 2009). 

                                                 
 

3
 On the theoretical side, the embodied nature of technological change was at the core of the controversy between 

Robert Solow (1960) and Dale Jorgenson (1966) with Solow arguing that embodied technological change was 

dominant, hence investment was the key mechanism of economic growth, while Jorgenson arguing that – from the data 

available then – one could not provide a clear answer. Recent empirical macroeconomic estimates actually conclude 

that embodied technological change is the main transmission mechanism of new technologies into economic growth 

(see Greenwood et al., 1997). 
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Turning our attention to the microeconomic analysis, previous literature suggests that more 

complex and radical product innovation generally relies on formal R&D, while process innovation 

(which is often incremental rather than radical) is much more related to embodied technical change 

achieved by investment in new machinery and equipment (see Parisi et al., 2006). If such is the 

case, in traditional low-tech sectors – which are focusing on process innovation – productivity gains 

might be much more related to capital accumulation rather than to R&D expenditures. This was also 

one of the main message of the well-known Pavitt taxonomy (Pavitt, 1984), where firms in 

traditional sectors (Supplier Dominated) innovate mainly through embodied technological change 

acquired from firms in the Specialised Suppliers sector. 

Indeed, previous literature supports the hypothesis that firms in traditional sectors (most of 

them SMEs) face a different technological and economic environment (see Acs and Audretsch, 

1988 and 1990; Acs et al., 1994). In particular, in the low and medium-tech sectors, R&D does not 

represent the sole input through which firms can achieve innovative outcomes and productivity 

gains; for these firms it seems much easier to rely on the market and choose “to buy” embodied 

technical change rather than “to make” their own technology (see Acs and Audretsch, 1990; 

Santarelli and Sterlacchini, 1994; Santamaría et al., 2009). 

Unfortunately, previous literature dealing with the R&D-productivity relationship has 

generally neglected the investigation of the possible different impacts of embodied technological 

change across sectors. One exception is the already quoted contribution by Ortega-Argilés et al. 

(2010), where the authors had found that the R&D-productivity coefficient was higher and more 

significant in the high-tech sectors rather than in the middle and low-tech ones. Interestingly 

enough, they found that for capital formation the results were the opposite: in fact, its productivity 

impact was stronger in the low-tech sectors, lower but still significant in the medium-tech sectors, 

while it turned out to be not significant in the high-tech sectors. Consistently with what discussed in 

this section, this evidence seems to suggest that embodied technological change is crucial in the 

low-tech sectors, while in the high-tech sectors technological progress is mainly introduced through 

in-house R&D investments. 
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3. Data and methodology 

 

3.1 The data 

 

The microdata used in this study were provided by the JRC–IPTS (Joint Research Centre-

Institute for Prospective Technological Studies) of the European Commission; the provided 

information only concern publicly-traded companies and are extracted from a variety of sources, 

including companies’ annual reports, Securities and Exchange Commission (SEC) 10-K and 10-Q 

reports, daily news services and direct company contact, using standardized data definitions and 

collection procedure to assure consistent presentation of data.  

Available data includes: 

• Company identification, name and address, industry sector (Global Industry Classification 

Standard (GICS) that can be translated in the standard SIC classification); 

• Fundamental financial data including income statements, cash flows, taxes, dividends and 

earnings, pension funds, property assets, ownership data, etc. 

• Fundamental economic data, including the crucial information for this study, namely: sales, cost 

of goods (the difference between the former and the latter allows to obtain value added), capital 

formation, R&D expenditures, and employment. 

 

Given the crucial role assumed by the R&D variable in this study, it is worthwhile to discuss 

in detail what is intended by R&D in our database. This item represents all costs incurred during the 

year that relate to the development of new products and services. It is important to notice that this 

amount is only the company’s contribution and exclude amortization and depreciation of previous 

investments, so being a genuine flow of current in-house R&D expenditures
4
. On the whole, the 

adopted definition of R&D is quite restrictive and refers to the genuine flow of current additional 

resources coming from internal sources and devoted to the launch and development of entirely new 

products. 

The covered period is 1990-2008; however, the number of years available for each company 

depends upon the company’s history; therefore, the data source is unbalanced in nature and 

comprises 1,809 companies (1,170 American firms and 639 European firms) for a total of 16,079 

observations. 

                                                 
4
 In particular the figure excludes: customer or government-sponsored R&D expenditures engineering expenses such as 

routinised ongoing engineering efforts to define, enrich or improve the qualities and characteristics of the existing 

products; inventory royalties; market research and testing. 
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Once acquired the rough original data from IPTS, we proceeded in the construction of a 

longitudinal database that would be adequate to run panel estimations addressed to test the 

hypotheses discussed in the previous section. In the Appendix, we describe in detail the adopted 

articulated procedure to construct the dataset.  

 

 

3.2 The econometric specification and descriptive statistics 

 

Consistently with previous literature discussed in Section 2, we will test the following 

augmented production function, obtainable from a standard Cobb-Douglas function in three inputs: 

physical capital, labour and knowledge capital (see Hall and Mairesse, 1995, formulas 1-2-3, pp. 

268-69)
5
. 

 

(1) ελγβα ++++= )ln()/ln()/ln()/ln( EECEKEVA                           

 

Our proxy for productivity is labour productivity (Value Added, VA, over total employment, 

E); our pivotal impact variables are the R&D stock (K) per employee and the physical capital stock 

(C) per employee.  

 

As it is common in this type of literature (see Hulten, 1990; Jorgenson, 1990; Hall and 

Mairesse, 1995; Parisi et al., 2006), stock indicators rather than flows were considered as impact 

variables; indeed, productivity is affected by the cumulated stocks of capital and R&D expenditures 

and not only by current or lagged flows.  

Moreover, dealing with R&D stocks - rather than flows - has two additional advantages: on 

the one hand, since stocks incorporate the cumulated R&D investments in the past, the risks of 

endogeneity is minimised; on the other hand, there is no need to deal with the complex (and often 

arbitrary) choice of the appropriate structure of lags for the R&D regressor. 

 

In this framework, R&D and physical capital stocks were computed using the perpetual 

inventory method, according to the formulas (A.1) and (A.2) reported in the Appendix (fifth step). 

Finally, taking per capita values permits both standardisation of our data and elimination of 

possible size effects (see, for example, Crépon et al., 1998, p.123). In this framework, total 

                                                 
5
 As clearly stated and demonstrated in Hall and Mairesse (1995), the direct production function approach to measure 

returns to R&D capital is preferred on other possible alternative specifications.  
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employment (E) is a control variable: if λ turns out to be greater than zero, it indicates increasing 

returns.  

All the variables are taken in natural logarithms. 

While K/E (R&D stock per employee) captures that portion of technological change which 

is related to the cumulated R&D investment, C/E (physical capital stock per employee) is the result 

of the cumulated investment, implementing different vintages of technologies. So, this variable 

encompasses the so-called embodied technological change, possibly affecting productivity growth 

(see Section 2).  

Table 1 reports the correlation matrix of the variables included in eq. 1. As can be seen, a 

preliminary evidence of the expected positive impacts of both K/E and C/E upon VA/E emerges. 

Moreover, no evidence of possible serious collinearity problems comes out, since the three relevant 

correlation coefficients turn out to be less than 0.285 in absolute values. 

 

Tab. 1: Correlation table: correlation coefficients 

 Log(Value 

added per 

employee) 

Log(R&D 

stock per 

employee) 

Log(Physical 

stock per 

employee) 

Log(Employment) 

Log(Value added 

per employee) 
1    

Log(R&D stock 

per employee) 
0.451 1   

Log(Physical stock 

per employee) 
0.278 0.252 1  

Log(Employment) 

 
-0.040 -0.284 0.209 1 

 

Note: all correlation coefficients are 1% significant. 

 

Specification (1) was estimated through different estimation techniques.  

 

Firstly, pooled ordinary least squared (POLS) regressions were run to provide preliminary 

reference evidence. Although very basic, these POLS regressions were controlled for 

heteroskedasticity (we used the Eicker/Huber/White sandwich estimator to compute robust standard 

errors) and for a complete set of three batteries of dummies, namely country (19 countries), time (19 

years) and sector (52 two-digit SIC-sectors) dummies.  
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Secondly, fixed effect (FE) regressions were performed in order to take into account the firm 

specific unobservable characteristics such as managerial capabilities. The advantage of the FE 

estimates is that different firms are not pooled together but taken into account in their own 

singularity. The disadvantage is that country and sector dummies are dropped for computational 

reasons, since they are encompassed by the individual dummies.  

Thirdly, random effect (RE) regressions were run to provide the more complete results, 

where both individual (randomized) effects are taken into account together with the possibility to 

retain all the entire batteries of dummies. 

Tables 2, 3, 4 and 5 report the means and standard deviations of the four relevant variables 

in specification (1)
6
. We will refer to them – when appropriate – in the following Section 4 that is 

devoted to discuss the econometric results.  

 

 

Tab. 2: VA/E (Value Added/Employees) in PPP-2000 US dollars  

 Mean Standard deviation 

Whole sample (16,079) 102.781 91.008 

US (12,605) 108.793 96.475 

EU (3,474) 80.965 62.912 

Manufacturing (12,876) 99.565 92.914 

High-tech manufacturing sectors (7,693) 112.038 108.275 

Other manufacturing sectors (5,183) 81.050 58.938 

Services (3,203) 115.709 81.648 

US Manufacturing (10,214) 104.18 98.355 

EU Manufacturing (2,662) 81.324 65.678 

US High-tech manufacturing (6,462) 116.125 112.525 

EU High-tech manufacturing (1,231) 90.583 79.089 

US Other manufacturing sectors (3,752) 83.983 61.733 

EU Other manufacturing sectors (1,431) 73.359 50.093 

US Services (2,391) 127.907 86.000 

EU Services (812) 79.789 52.858 

Note: the number of observations is reported in brackets 

 

 

 

 

                                                 
6
 When referring to the EU, the following tables are based on the observations relative to the 18 countries listed in table 

A1 in the Appendix. 
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Tab. 3: K/E (R&D Stock/Employees) in PPP-2000 US dollars 

 Mean Standard deviation 

Whole sample (16,079) 86.076 105.899 

US (12,605) 93.467 110.310 

EU (3,474) 59.267 82.701 

Manufacturing (12,876) 82.470 106.904 

High-tech manufacturing sectors (7,693) 110.748 119.007 

Other manufacturing sectors (5,183) 40.497 66.507 

Services (3,203) 100.574 100.478 

US Manufacturing (10,214) 88.593 110.932 

EU Manufacturing (2,662) 58.974 85.842 

US High-tech manufacturing (6,462) 114.977 121.210 

EU High-tech manufacturing (1,231) 88.545 103.958 

US Other manufacturing sectors (3,752) 70.251 43.153 

EU Other manufacturing sectors (1,431) 33.536 54.921 

US Services (2,391) 114.286 105.119 

EU Services (812) 60.199 71.483 

Note: the number of observations is reported in brackets 

 

Tab. 4: C/E (Physical capital Stock/Employees) in PPP-2000 US dollars 

 Mean Standard deviation 

Whole sample (16,079) 81.026 80.542 

US (12,605) 81.567 79.633 

EU (3,474) 79.065 83.742 

Manufacturing (12,876) 84.886 81.585 

High-tech manufacturing sectors (7,693) 78.142 76.709 

Other manufacturing sectors (5,183) 94.895 87.380 

Services (3,203) 65.512 74.222 

US Manufacturing (10,214) 84.785 81.171 

EU Manufacturing (2,662) 85.272 83.167 

US High-tech manufacturing (6,462) 79.272 77.609 

EU High-tech manufacturing (1,231) 72.208 71.535 

US Other manufacturing sectors (3,752) 94.279 86.153 

EU Other manufacturing sectors (1,431) 96.510 90.532 

US Services (2,391) 67.819 71.089 

EU Services (812) 58.718 82.433 

Note: the number of observations is reported in brackets 
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Tab. 5: E (Employees) 

 Mean Standard deviation 

Whole sample (16,079) 11,204 35,302 

US (12,605) 9,124 31,064 

EU (3,474) 18,752 46,846 

Manufacturing (12,876) 11,951 35,250 

High-tech manufacturing sectors (7,693) 8,179 23,264 

Other manufacturing sectors (5,183) 17,551 47,237 

Services (3,203) 8,199 35,356 

US Manufacturing (10,214) 9,714 31,116 

EU Manufacturing (2,662) 20,535 46,937 

US High-tech manufacturing (6,462) 7,298 21,294 

EU High-tech manufacturing (1,231) 12,803 31,259 

US Other manufacturing sectors (3,752) 13,876 42,752 

EU Other manufacturing sectors (1,431) 27,187 56,244 

US Services (2,391) 6,600 30,718 

EU Services (812) 12,908 46,096 

Note: the number of observations is reported in brackets 

4. Econometric analysis 

From Table 2 we get a further confirmation of the US/EU productivity gap that was 

discussed from a macroeconomic point of view in Section 1. As can be seen, the US advantage in 

labour productivity homogeneously emerges both in aggregate and within the different sectoral 

groups: 109 vs. 81 in the whole sample; 104 vs. 81 in manufacturing; 116 vs. 90 in the high-tech 

manufacturing sectors; 84 vs. 73 in the other manufacturing sector; 128 vs. 80 in the service sectors. 

In this section, we will try to provide some explanations of these differentials. 

Table 6 provides the overall results concerning the whole sample of 1,809 firms (16,079 

observations). As can be seen, we found robust evidence of a positive and significant impact of 

R&D on productivity with an elasticity ranging from 0.089 to 0.205, according to the different 

adopted estimation techniques. As discussed in Section 2, in the reference literature the estimated 

overall elasticity of productivity in respect to R&D is positive, statistically significant and with a 

magnitude - depending on the data and the adopted econometric methodology - ranging from 0.05 

to 0.25; hence, the obtained estimates are within the bounds set by previous empirical studies. 

As far as physical capital is concerned, here again we have no surprise in assessing a 

positive and significant impact ranging from 0.093 to 0.115.  

The whole sample estimates will be the reference for all the following analyses and the 

correspondent results will be reported in the left panel of all the following tables.
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Tab. 6: Whole sample, US and EU 

 

 Whole sample US EU 

 POLS FE RE POLS FE RE POLS FE RE 

Log(R&D stock 

per employee) 

0.205*** 

(0.006) 

0.089*** 

(0.007) 

0.107*** 

(0.007) 

0.228*** 

(0.007) 

0.098*** 

(0.008) 

0.119*** 

(0.008) 

0.144*** 

(0.013) 

0.058*** 

(0.011) 

0.074*** 

(0.010) 

Log(Physical 

stock per 

employee) 

0.115*** 

(0.006) 

0.093*** 

(0.006) 

0.099*** 

(0.006) 

0.106*** 

(0.007) 

0.100*** 

(0.007) 

0.102*** 

(0.007) 

0.125*** 

(0.012) 

0.053*** 

(0.011) 

0.078*** 

(0.009) 

Log(Employees) 

 

0.031*** 

(0.003) 

-0.049*** 

(0.007) 

-0.012** 

(0.007) 

0.035*** 

(0.004) 

-0.034* 

(0.008) 

-0.006 

(0.006) 

0.015** 

(0.007) 

-0.162*** 

(0.017) 

-0.059*** 

(0.011) 

Constant 

 

0.860 

(0.493) 

3.529*** 

(0.038) 

1.115 

(0.984) 

3.906*** 

(0.103) 

3.523*** 

(0.036) 

1.124 

(0.697) 

2.330*** 

(0.135) 

3.744*** 

(0.079) 

2.256** 

(1.016) 

          

Wald time-

dummies  

(p-value) 

4.5*** 

 

(0.000) 

11.4*** 

 

(0.000) 

165.4*** 

 

(0.000) 

5.4*** 

 

(0.000) 

9.6*** 

 

(0.000) 

199.2*** 

 

(0.000) 

1.9*** 

 

(0.009) 

2.4*** 

 

(0.001) 

19.3 

 

(0.313) 

Wald country-

dummies  

(p-value) 

52.5*** 

 

(0.000) 

- 67.2*** 

 

(0.000) 

- - - 18.6*** 

 

(0.000) 

- 25.8* 

 

(0.078) 

Wald sectoral-

dummies  

(p-value) 

174.2*** 

 

(0.000) 

- 233.1*** 

 

(0.000) 

86.4*** 

 

(0.000) 

- 154.0*** 

 

(0.000) 

99.8*** 

 

(0.000) 

- 83.0*** 

 

(0.000) 

          

R
2 
(overall) 0.32 0.18 0.29 0.34 0.21 0.31 0.27 0.01 0.17 

Obs. 16,079 12,605 3,474 

N. of firms 1,809 1,170 639 

 

Notes:   - (Robust in POLS) standard-errors in parentheses; * significance at 10%, ** 5%, *** 1%. 

- For Time-dummies, Country-dummies and Sectoral-dummies Wald test of joint significance are reported. 
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The hypothesis of this study is that the lower European economic performance in 

comparison with the US can be explained not only by a lower level of corporate R&D investment, 

but also by a lower capacity to translate R&D investment into productivity gains.  This hypothesis 

can be tested running specification 1 separately for the US and the EU firms (1,170 vs. 639 

companies).  

As can be seen in the second and third panel of Table 6, data seems to fully confirm the 

proposed hypothesis. Although uniformly positive and statistically significant at the 99% level of 

confidence, the R&D coefficients for the US firms turn out to be consistently larger than the 

corresponding coefficients for the European firms. Indeed, the three estimation techniques 

consistently provide European elasticities equal to about 60% of their US counterparts. We interpret 

these unambiguous results as a clear evidence of the better ability of US firms in translating R&D 

investments in productivity gains and as a signal of a gap of efficiency that European firms and 

European policy have to deal with. 

As far as the productivity impact of the physical capital, POLS and FE/RE estimates tell us 

different stories in terms of the US-EU comparison. However, if we rely on the more reliable 

methodologies controlling for the idiosyncratic effects, it appears that the US reveals an advantage 

similar to the one emerged for the intangible R&D investments. Therefore, US firms result more 

efficient in getting productivity gains both from the R&D and the physical capital investments.  

However, previous literature - discussed in Section 2 – came to the conclusion that a greater 

impact of R&D investment on productivity is expected in the high-tech sectors rather than in the 

low-tech ones. Therefore, it may well be the case that the US advantage in terms of R&D efficiency 

is totally due to a sectoral composition effects (structural effect), since high-tech sectors are over-

represented in the US economy in comparison with the European one. In contrast, if an intrinsic 

effect is present, the US advantage should be detectable across all sectors of the economy.  

Table 7 displays the US/EU comparison with regard to the manufacturing sectors only. As it 

is obvious, the aggregate European gap in terms of efficiency is fully confirmed: as for the whole 

economy, in the manufacturing sectors the four relevant US coefficients are uniformly larger that 

their European counterparts. 

Interestingly enough, Table 8 focusing on the service sectors tells us exactly the same story, 

confirming the US advantage across all the coefficients.  
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Tab. 7: US versus EU: Manufacturing 

 Whole sample US EU 

 POLS FE RE POLS FE RE POLS FE RE 

Log(R&D stock per 

employee) 

0.205*** 

(0.006) 

0.089*** 

(0.007) 

0.107*** 

(0.007) 

0.228*** 

(0.008) 

0.078*** 

(0.009) 

0.103*** 

(0.009) 

0.147*** 

(0.014) 

0.052*** 

(0.013) 

0.070*** 

(0.012) 

Log(Physical stock 

per employee) 

0.115*** 

(0.006) 

0.093*** 

(0.006) 

0.099*** 

(0.006) 

0.099*** 

(0.008) 

0.089*** 

(0.008) 

0.093*** 

(0.008) 

0.135*** 

(0.014) 

0.059*** 

(0.013) 

0.086*** 

(0.012) 

Log(Employees) 0.031*** 

(0.003) 

-0.049*** 

(0.007) 

-0.012** 

(0.007) 

0.027*** 

(0.004) 

-0.069*** 

(0.010) 

-0.029 

(0.008) 

0.023*** 

(0.008) 

-0.166*** 

(0.022) 

-0.045*** 

(0.014) 

Constant 

 

0.860 

(0.493) 

3.529*** 

(0.038) 

1.115 

(0.984) 

2.155*** 

(0.468) 

3.560*** 

(0.040) 

2.309 

(1.158) 

2.607*** 

(0.146) 

3.769*** 

(0.093) 

3.016*** 

(0.921) 

          

Wald time-

dummies  

(p-value) 

4.5*** 

 

(0.000) 

11.4*** 

 

(0.000) 

165.4*** 

 

(0.000) 

4.9*** 

 

(0.000) 

13.2*** 

 

(0.000) 

204.4*** 

 

(0.000) 

1.7* 

 

(0.029) 

2.1** 

 

(0.004) 

16.1 

 

(0.514) 

Wald country-

dummies  

(p-value) 

52.5*** 

 

(0.000) 

- 67.2*** 

 

(0.000) 

- - - 

 

26.8*** 

 

(0.000) 

- 20.6 

 

(0.244) 

Wald sectoral-

dummies  

(p-value) 

174.2*** 

 

(0.000) 

- 233.1*** 

 

(0.000) 

73.7*** 

 

(0.000) 

- 128.3*** 

 

(0.000) 

14.4*** 

 

(0.000) 

- 33.8 

 

(0.139) 

          

R
2 
(overall) 0.32 0.18 0.29 0.32 0.15 0.28 0.28 0.01 0.17 

Obs. 16,079 10,214 2,662 

N. of firms 1,809 914 469 

 

 

Notes:   - (Robust in POLS) standard-errors in parentheses; * significance at 10%, ** 5%, *** 1%. 

- For Time-dummies, Country-dummies and Sectoral-dummies Wald test of joint significance are reported. 
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Tab. 8: US versus EU: Services 

  

 Whole sample US  

 

EU  

 

 POLS FE RE POLS FE RE POLS FE RE 

Log(R&D stock per 

employee) 

0.205*** 

(0.006) 

0.089*** 

(0.007) 

0.107*** 

(0.007) 

0.215*** 

(0.017) 

0.125*** 

(0.017) 

0.150*** 

(0.014) 

0.126*** 

(0.023) 

0.086*** 

(0.024) 

0.097*** 

(0.018) 

Log(Physical stock 

per employee) 

0.115*** 

(0.006) 

0.093*** 

(0.006) 

0.099*** 

(0.006) 

0.149*** 

(0.017) 

0.140*** 

(0.016) 

 

0.143*** 

(0.015) 

0.108*** 

(0.024) 

0.045** 

(0.022) 

0.070*** 

(0.020) 

Log(Employees) 

 

0.031*** 

(0.003) 

-0.049*** 

(0.007) 

-0.012** 

(0.007) 

0.086*** 

(0.010) 

0.051*** 

(0.016) 

0.058 

(0.013) 

0.017 

(0.015) 

-0.141*** 

(0.030) 

-0.076 

(0.021) 

Constant 

 

0.860 

(0.493) 

3.529*** 

(0.038) 

1.115 

(0.984) 

3.268*** 

(0.195) 

3.755*** 

(0.093) 

3.242*** 

(0.520) 

-0.457 

(0.301) 

3.623*** 

(0.185) 

3.138*** 

(0.854) 

          

Wald time-

dummies  

(p-value) 

4.5*** 

 

(0.000) 

11.4*** 

 

(0.000) 

165.4*** 

 

(0.000) 

3.4*** 

 

(0.000) 

4.9*** 

 

(0.000) 

92.6*** 

 

(0.000) 

1.1 

 

(0.348) 

0.6 

 

(0.000) 

13.1 

 

(0.728) 

Wald country-

dummies  

(p-value) 

52.5*** 

 

(0.000) 

- 67.2*** 

 

(0.000) 

- - - 

 

4.1*** 

 

(0.000) 

- 15.5 

 

(0.213) 

Wald sectoral-

dummies  

(p-value) 

174.2*** 

 

(0.000) 

- 233.1*** 

 

(0.000) 

84.7*** 

 

(0.000) 

- 70.4*** 

 

(0.000) 

73.5*** 

 

(0.000) 

- 64.8*** 

 

(0.000) 

          

R
2 
(overall) 0.32 0.18 0.29 0.40 0.30 0.39 0.31 0.03 0.27 

Obs. 16,079 2,391 812 

N. of firms 1,809 256 170 

 

Notes:   - (Robust in POLS) standard-errors in parentheses; * significance at 10%, ** 5%, *** 1%. 

- For Time-dummies, Country-dummies and Sectoral-dummies Wald test of joint significance are reported. 
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Hence, at this stage, we can conclude that both US manufacturing and US service firms are 

more efficient in translating their investments (both in R&D and in physical capital) into 

productivity increases. Hence, the transatlantic productivity divide can be explained not only by a 

lower level of corporate R&D investment
7
, but also by a lower capacity to translate R&D and 

capital investment into productivity gains, and this seems to be obvious both within manufacturing 

and within services. 

Tables 9 and 10 display the results concerning only manufacturing firms split both across 

the high-tech sectors vs. other sectors and the two main geographical areas. These results can be 

commented on along two dimensions: between areas and within areas. Let us start from the between 

areas comparison. 

As far as the high-tech sectors are concerned, American firms reveal to be more efficient in 

translating both the R&D and the capital expenditures into productivity increases. As usual, all the 

coefficients are positive, fully significant and within the expected magnitude ranges; however, 

looking at the more sophisticated FE and RE estimates, all the four US coefficients are larger than 

the corresponding European ones. Hence, at least in the high-tech manufacturing sectors, US firms 

are more able to transfer their own investments into productivity gains. 

 

 

 

 

                                                 
7
 Looking at Table 3, the European underinvestment in comparison with the US is obvious and spread across the 

sectors: the whole sample K/E is 59 in the EU vs. 93 in the US; 59 vs. 89 in the manufacturing sectors; 89 vs. 115 in the 

high-tech manufacturing sectors; 34 vs. 70 in the other manufacturing sectors; 60 vs. 114 in the service sectors. 



 22

 

Tab.9: US versus EU: High-tech manufacturing sectors 

 Whole sample US  

High-tech manufacturing 

EU 

High-tech manufacturing 

 POLS FE RE POLS FE RE POLS FE RE 

Log(R&D stock per 

employee) 

0.205*** 

(0.006) 

0.089*** 

(0.007) 

0.107*** 

(0.007) 

0.251*** 

(0.010) 

0.069*** 

(0.013) 

0.105*** 

(0.012) 

0.172*** 

(0.032) 

0.065*** 

(0.020) 

0.081*** 

(0.019) 

Log(Physical stock 

per employee) 

0.115*** 

(0.006) 

0.093*** 

(0.006) 

0.099*** 

(0.006) 

0.112*** 

(0.011) 

0.101*** 

(0.011) 

0.105*** 

(0.010) 

0.127*** 

(0.025) 

0.029 

(0.022) 

0.061*** 

(0.020) 

Log(Employees) 0.031*** 

(0.003) 

-0.049*** 

(0.007) 

-0.012** 

(0.007) 

0.041*** 

(0.005) 

-0.08*** 

(0.013) 

-0.03*** 

(0.010) 

0.054*** 

(0.013) 

-0.155** 

(0.033) 

-0.026 

(0.023) 

Constant 0.860 

(0.493) 

3.529*** 

(0.038) 

1.115 

(0.984) 

3.147*** 

(0.074) 

3.525*** 

(0.055) 

3.060*** 

(0.205) 

2.691*** 

(0.226) 

3.499*** 

(0.166) 

3.579*** 

(1.022) 

          

Wald time-

dummies  

(p-value) 

4.5*** 

(0.000) 

11.41*** 

(0.000) 

165.4*** 

(0.000) 

2.2*** 

(0.002) 

8.3*** 

(0.000) 

112.8*** 

(0.000) 

2.0*** 

(0.009) 

2.4*** 

(0.000) 

25.6* 

(0.081) 

Wald country-

dummies  

(p-value) 

52.5*** 

(0.000) 

- 67.2*** 

(0.000) 

- - - 

 

11.5*** 

(0.000) 

- 10.7 

(0.710) 

Wald sectoral-

dummies  

(p-value) 

38.2*** 

(0.000) 

- 233.1*** 

(0.000) 

78.8*** 

(0.000) 

- 31.2*** 

(0.000) 

14.4*** 

(0.000) 

- 2.4 

(0.790) 

          

R
2 
(overall) 0.32 0.18 0.29 0.28 0.12 0.23 0.26 0.01 0.13 

Obs. 16,079 6,462 1,231 

N. of firms 1,809 591 213 

 

Notes:   - (Robust in POLS) standard-errors in parentheses; * significance at 10%, ** 5%, *** 1%. 

- For Time-dummies, Country-dummies and Sectoral-dummies Wald test of joint significance are reported. 
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Tab. 10: US versus EU: Other manufacturing sectors 

 

 Whole sample US Other manufacturing EU Other manufacturing 

 POLS FE RE POLS FE RE POLS FE RE 

Log(R&D stock per 

employee) 

0.205*** 

(0.006) 

0.089*** 

(0.007) 

0.107*** 

(0.007) 

0.175*** 

(0.008) 

0.060*** 

(0.010) 

0.079*** 

(0.010) 

0.112*** 

(0.013) 

0.035** 

(0.015) 

0.056*** 

(0.014) 

Log(Physical stock 

per employee) 

0.115*** 

(0.006) 

0.093*** 

(0.006) 

0.099*** 

(0.006) 

0.074*** 

(0.009) 

0.063*** 

(0.012) 

0.066*** 

(0.009) 

0.146*** 

(0.016) 

0.093*** 

(0.016) 

0.118*** 

(0.016) 

Log(Employees) 0.031*** 

(0.003) 

-0.049*** 

(0.007) 

-0.012** 

(0.007) 

-0.007 

(0.007) 

-0.087** 

(0.015) 

-0.049*** 

(0.011) 

-0.014 

(0.009) 

-0.209*** 

(0.028) 

-0.075*** 

(0.017) 

Constant 0.860 

(0.493) 

3.529*** 

(0.038) 

1.115 

(0.984) 

2.351*** 

(0.446) 

3.763*** 

(0.054) 

2.501** 

(0.487) 

3.815*** 

(0.172) 

4.006*** 

(0.159) 

-0.245 

(0.362) 

          

Wald time-

dummies  

(p-value) 

4.5*** 

(0.000) 

11.4*** 

(0.000) 

165.4*** 

(0.000) 

4.2*** 

(0.000) 

9.9*** 

(0.000) 

171.0*** 

(0.000) 

0.8 

(0.718) 

1.1 

(0.397) 

30.8** 

(0.030) 

Wald country-

dummies  

(p-value) 

52.5*** 

(0.000) 

- 67.2*** 

(0.000) 

- - - 

 

28.7*** 

(0.000) 

- 18.5 

(0.237) 

Wald sectoral-

dummies  

(p-value) 

38.2*** 

(0.000) 

- 233.1*** 

(0.000) 

79.5*** 

(0.000) 

- 207.3*** 

(0.000) 

12.6*** 

(0.000) 

- 44.3*** 

(0.001) 

          

R
2 
(overall) 0.32 0.18 0.29 0.44 0.12 0.41 0.35 0.01 0.27 

Obs. 16,079 3,752 1,431 

N. of firms 1,809 323 256 

 

 Notes:   - (Robust in POLS) standard-errors in parentheses; * significance at 10%, ** 5%, *** 1%. 

- For Time-dummies, Country-dummies and Sectoral-dummies Wald test of joint significance are reported. 
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With regard to the rest of the manufacturing sectors, US firms are still more efficient with 

regard to the R&D stock, while embodied technological change seems to play a more relevant role 

in the European firms. On the whole, US firms are leading in terms of R&D efficiency regardless of 

the sectors, while embodied technological change appears the most effective in the US high-tech 

sectors and in the EU non-high-tech manufacturing sectors.  

Turning our attention to the within area comparisons, the following pictures emerge.   

Within the US, high-tech sectors display larger productivity elasticities both with regard to 

the R&D and the capital investment (all the six coefficients in the high-tech estimates are larger 

than their correspondent figures in the other sectors). Hence, in the US manufacturing high-tech 

sectors appear to be characterized by a higher efficiency in translating investments into productivity 

advantages. 

In contrast, European firms in the high-tech sectors show higher coefficients concerning the 

productivity elasticity of the R&D stock (all the three coefficients), while the reverse happens as far 

as physical capital is concerned (all the three coefficients are higher in the non-high-tech 

manufacturing sectors, while the FE estimate in the high-tech sectors is even not significant). This 

picture largely confirms what has emerged from a previous study based on DTI European microdata 

(Ortega-Argilés et al., 2010) where the R&D coefficient was found to increase monotonically 

moving from the low-tech to the medium and high-tech sectors, while the capital coefficient was 

found to be characterised by an opposite pattern. One possible interpretation is that productivity 

growth in the European non-high-tech firms is still heavily dependent on the investment in physical 

capital (embodied technological change). 

On the whole, the US revealed better capacity to translate R&D and capital investments into 

productivity gains is detected across all the sectors of the economy, with the only exception of non-

high tech manufacturing sectors where embodied technological change turns out to be more 

effective in the EU. Therefore, our evidence supports the presence of an obvious and significant 

intrinsic effect; in particular, US firms are better able to get productivity gains from their R&D 

expenditures, no matter which sector they belong to. 

 

5. Conclusions and policy implications 

 

The role of corporate R&D investment has been recognised as a fundamental engine for 

productivity growth both at the macro and microeconomic level. As shown in Section 1, the EU has 

spent notably less on R&D than the US in the last two decades, particularly as far as the private 

business sector is concerned.  However, in this paper we have tested the hypothesis that the 
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transatlantic productivity gap may be due not only to a lower level of corporate R&D expenditures 

by European firms, but also to a possible lower capacity to translate corporate R&D expenditures 

into productivity gains. Indeed, it may be well the case that European economies not only invest 

less in R&D, but also get less from their R&D investment.  

Consistently with previous literature, we found robust evidence of a positive and significant 

impact of R&D on productivity with an elasticity ranging from 0.089 to 0.205, according to the 

different adopted estimation techniques. However, although uniformly positive and statistically 

significant, the R&D coefficients for the US firms turn out to be consistently larger than the 

corresponding coefficients for the European firms. Indeed, the three estimation techniques 

consistently provide European elasticities equal to about 60% of their US counterparts. We 

interpreted these unambiguous results as a clear evidence of the better ability of US firms in 

translating R&D investments into productivity gains and as a signal of a gap of efficiency that 

European firms and European policy have to deal with. 

To see to what extent the transatlantic differences may be related to the different sectoral 

structures in the US and the EU (being the US economy disproportionally characterised by high-

tech manufacturing and ICT-intensive services), we differentiated the US/EU comparative 

empirical exercise by sectors. It results that both US manufacturing and US service firms are more 

efficient in translating their investments (both in R&D and in physical capital) into productivity 

increases. In addition, the US efficiency advantage in R&D activities is obvious both in the high-

tech manufacturing sectors and in the rest of the manufacturing sectors. On the whole, US firms are 

leading in terms of R&D efficiency regardless of the sectors.  Hence, the transatlantic productivity 

divide can be explained not only by a lower level of corporate R&D investment, but also by a lower 

capacity to translate R&D into productivity gains across all sectors of the economy.  

Looking inside the American and the European aggregates, within the US, high-tech sectors 

display larger productivity elasticities both with regard to the R&D and the capital. Hence, in the 

US manufacturing, high-tech sectors appear to be characterized by a higher efficiency in translating 

investments into productivity advantages. 

Differently, European firms in the high-tech sectors turn out to be characterised by larger 

coefficients concerning the productivity elasticity of the R&D stock, while the reverse happens as 

far as physical capital is concerned. Hence, productivity growth in the European non-high-tech 

firms is still heavily dependent on the investment in physical capital (embodied technological 

change). 

Although necessarily tentative, some policy implications can be derived from the empirical 

results obtained in this study.  
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Firstly, the obtained results show that the US economy is uniformly more efficient in getting 

productivity advantages from investments in R&D activities; while this is obvious for the whole 

economy, the efficiency gap is confirmed separately in services and manufacturing and – within 

manufacturing – both in the high-tech sectors and in the other industrial sectors. Hence, the 

transatlantic divide is not only a matter either of a lower R&D investment in Europe or of an 

European industrial structure specialised in middle and low-tech sectors (structural effect): 

European firms are structurally less able to translate R&D expenditures into productivity gains. This 

intrinsic effect can be due to a lower level of human capital or to a lag in those organizational 

changes that are indispensable complements of technological change. While these perspectives are 

beyond the scope of the present study, this conclusion has a first important policy implication: just 

increasing R&D is a necessary but not sufficient policy if the overall increase in productivity is the 

target. 

Secondly, the paper shows that R&D investment is not the sole source of productivity gains; 

technological change embodied in capital formation is of comparable importance. However - also 

with regard to the relationship between physical capital and productivity - the US economy exhibits 

an advantage, similar to the one detected for the R&D activities. Here again, the suspect is that 

European firms lack of those complementary factors – such as adequate human resources and 

updated organizational layouts – which fuel the productivity increases resulting from tangible and 

intangible investments.  

Thirdly, embodied technological change appears to be crucial within European non-high-

tech firms; hence, a European innovation policy aiming to increase productivity in the medium/low-

tech sectors should support overall capital formation at least as much as R&D expenditures. 
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APPENDIX: The construction of the dataset 

 

 

First step: data extraction 

 

In guiding the extraction of the data from what provided, the following criteria were adopted: 

- Selecting only those companies with R&D>0 in, at least, one year of the available time 

span; 

- Selecting only those companies located in the US and in the EU 27 countries; 

- Extracting information concerning R&D, sales, cost of goods (the difference between 

sales and cost of goods allowed to obtain value added), capital formation, R&D 

expenditures, and employment. More specifically, this is the list of the available 

information for each firm included in the obtained workable dataset:  

o Country of incorporation (location of the headquarter); 

o Industry code at 2008; 

o R&D expenses; 

o Capital expenditures; 

o Net turnover; 

o Cost of goods sold; 

o Employees. 

-  All the value data were expressed in the current national currency in millions (for 

instance: countries which are currently adopting Euro have values in Euro for the entire 

examined period). 

 

 

Second step: deflation of current nominal values 

 

Nominal values were commuted into constant price values trough GDP deflators (source: 

IMF) centred in year 2000. For a tiny minority of firms reporting in currencies different from the 

national ones (namely: 41 British firms, 9 Dutch firms, 4 Irish firms, 2 Luxembourg firms, 1 

German and 1 Swedish firms reporting in US dollars and 7 British firms, 2 Danish firms and 1 

Estonian firm reporting in euro), we opted for deflating the nominal values through the national 

GDP deflator, as well.  

 

 

Third step: values in PPP dollars 

 

Once obtained constant 2000 prices values, all figures were converted into US dollars using 

the PPP exchange rate at year 2000 (source: OECD)
8
. 9 companies from 4 countries (Lithuania, 

Latvia, Malta and Romania) were excluded, due to the unavailability of PPP exchange rates from 

the OECD. The 10 companies reporting in euro but located in non-euro countries (Denmark, 

Estonia and the UK) were excluded as well
9
; while the 58 European companies reporting in US 

dollars were kept as such. 

                                                 
8
 This procedure is consistent with what suggested by the Frascati Manual (OECD, 2002) in order to correctly adjust 

R&D expenditures for differences in price levels over time (i.e. intertemporal differences asking for deflation) and 

among countries (i.e. interspatial differences asking for a PPP equivalent). In particular “...the Manual recommends the 

use of the implicit gross domestic product (GDP) deflator and GDP-PPP (purchasing power parity for GDP), which 

provide an approximate measure of the average real “opportunity cost” of carrying out the R&D.” (ibidem, p. 217). 
9
 Given the very small number of firms involved, it was decided not to take the arbitrary choice of using either the 

national or the Euro PPP converter. 
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Fourth step: the format of the final data string 

 

The obtained unbalanced database comprises 2,777 companies, 2 codes (country and sector) 

and 5 variables (see the bullet points above) over a period of 19 years (1990-2008). 

Since one of the purposes of this study is to distinguish across high-tech and medium/low-

tech sectors, a  third code was added, labelling as High-tech the following sectors
10
:  

• SIC 283: Drugs (ISIC Rev.3, 2423: Pharmaceuticals);  

• SIC 357: Computer and office equipments (ISIC Rev. 3, 30: Office, accounting and 

computing machinery); 

• SIC 36 (excluding 366): Electronic and other electrical equipment and components, 

except computer equipment (ISIC Rev. 3, 31: Electrical machinery and apparatus); 

• SIC 366: Communication equipment (ISIC Rev. 3, 32: Radio, TV and communications 

equipment); 

• SIC 372-376: aircraft and spacecraft (ISIC Rev. 3, 353: Aircraft and spacecraft); 

• SIC 38: measuring, analyzing and controlling instruments (ISIC Rev. 3, 33: Medical, 

precision and optical instruments) 

 

 

Fifth step: computation of the R&D and capital stocks. 

 

Consistently with the reference literature (see Section 2), the methodology adopted in this 

study requires to compute the R&D and capital stocks, accordingly with the perpetual inventory 

method. In practice, the following two formulas have to be applied: 
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where  I = gross investment  
   

where g is generally computed as the ex ante pre-sample compounded average growth rate 

of the corresponding flow variable and δ is a depreciation rate. 

 

However, the reader has to be reminded that our dataset is spanning 19 years and it is 

unbalanced in nature. This means that only a minority of firms display continuous information all 

over the entire period, while many firms have information only for one or more spans over the 

1990-2008 period and these spans may be either very short or even isolated data. In addition, many 

firms display left-truncated data; for instance, the majority of European firms have data only for the 

most recent years. 

Given the unbalanced structure of the dataset, to strictly apply the formulas (1) and (2) to 

compute initial stocks (using – say – the first three years to obtain the ex-ante growth rates) would 

have implied to lose a huge amount of information. In the best case - say a firm with a complete set 

                                                 
10
 The standard OECD classification was taken (see Hatzichronoglou, 1997) and extended it including the entire 

electrical and electronic sector 36 (considered as a medium-high tech sector by the OECD). We opted for this extension 

taking into account that we just compare the high-tech sectors with all the other ones and that we need an adequate 

number of observations within the sub-group of the high-tech sectors. 
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of 19 data over the period - this methodology would have implied to lose 3 observations out of 19; 

in the worst case - say a firm characterized by data available only for some spells of three years 

each – this computation would have implied to lose all the available information for that particular 

firm. 

In order to avoid this massive dropping of available data, we adopted the following criteria. 

First, it was decided to compute a rate of growth using the initial three years of a given spell and 

then apply it to the initial flow and not to the fourth year (that is our t0  is the very first year of the 

spell and so g is an “ex post” 3-year compound growth rate). Second, it was iteratively applied this 

methodology to all the available spans of data comprising at least three consecutive years
11
. The 

combination of these two choices allowed us to keep all the available information, with the only 

exceptions of either isolated data or pairs of data.  

Although departing from the usual procedure, to rely on ex-post growth rates appears 

acceptable in order to save most of the available information in the dataset; however, the impact of 

this choice on the values assumed by the stocks is limited, since they are also affected by the flow 

values and the depreciation rates. Finally, the chosen growth rate affects only the initial stock and 

its impact quickly smoothes out as far as we move away from the starting year
12
. 

Therefore, - in order to be able to compute R&D and capital stocks according to the 

procedure described above – only R&D and capital expenditure flows data with at least 3 

observations in consecutive years were retained. This implied that 354 companies (mainly 

European) had to be dropped because of lacking 3 R&D observations in successive years and 30 

additional companies for lacking 3 capital expenditures observations in successive years. Thus, a 

total of 2,393 firms were retained at the end of this stage of the cleaning process. 

Turning the attention to the depreciation rates (δ), we differentiated both between R&D and 

capital and between the high-tech sectors vs. the other sectors, taking into account what is common 

in the reference literature which assumes δ = 6% for computing the capital stock and δ = 15% for 

computing the R&D stock (see Nadiri and Prucha, 1996 for the capital stock; Hall and Mairesse, 

1995 and Hall, 2007 for the R&D stock). 

Indeed, depreciation rates for the R&D stocks have to be assumed to be higher than the 

corresponding rates for physical capital, since it is assumed that technological obsolescence is more 

rapid than the scrapping of physical capital. 

However, depreciation rates for the high-tech sectors have to be assumed to be higher than 

the corresponding rates for medium and low-tech sectors under the assumption that technological 

obsolescence – both related to R&D efforts and to the embodied technologies incorporated in 

physical capital - is faster in the high-tech sectors. Specifically, depreciation rates were assumed 

equal to 6% and 7% with regard to physical capital in the low-medium and high-tech sectors 

respectively, while the corresponding δ for R&D stocks were assumed equal to 15% and 18% 

respectively. 

Once computed according to the formulas (1) and (2) and the adopted g and δ rates, the 

resulting stocks were checked and negative ones were dropped
13
. Moreover, we excluded a minority 

of unreliable data such as those indicating negative sales and cost of goods equal to zero.  

                                                 
11
 This means that for firms characterised by breaks in the data we computed different initial stocks, one for each 

available time span, consistently with what done by Hall (2007); however, differently from Hall (2007), we consider the 

different spans as belonging to the same firm and so we will assign – in the following econometric estimates – a single 

fixed or random effect to all the spans belonging to the same company history. 
12
 Options for the choice of g - different from the standard one - have been implemented by other authors, as well. For 

instance, Parisi et al. (2006), assume that the rate of growth in R&D investment at the firm level in the years before the 

first positive observation equals the average growth rate of industry R&D between 1980 and 1991 (the time-span 

antecedent to the longitudinal micro-data used in their econometric estimates). In general terms, the choice of a feasible 

g does not significantly affect the final econometric results of the studies. As clearly stated by Hall and Mairesse (1995, 

p.270, footnote 9): “In any case, the precise choice of growth rate affects only the initial stock, and declines in 

importance as time passes,...”. 
13
 The occurrence of negative stocks happens when g turns out to be negative and larger – in absolute value – than δ. 
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After these further drops of data, we ended up with 1,884 companies (1,210 US and 674 EU, 

for a total of 17,064 observations). 

 

 

Sixth step: outliers. 

 

At this point, in order to check for the presence of outliers (i.e. observations that appear to 

deviate markedly in terms of standard deviations from the relevant mean, possibly implying a bias 

in the econometric estimates), the Grubbs test (Grubbs, 1969) was run on the two critical variables 

in the analysis: the R&D stock (K) and the physical capital stock (C). 

Since the outlier test has to be applied to the variables used in the regression analysis, the 

test was run on the two normalised stock variables: K/E and C/E (see eq. 5 in Section 3.3).  

In detail, the Grubbs test - also known as the maximum normed residual test, (Grubbs, 1969; 

Stefansky, 1972) - is used to detect outliers in a dataset, either creating a new variable or dropping 

outliers out of the data set. Technically, the Grubbs test detects one outlier at each iteration
14
: the 

outlier is expunged from the data set and the test is iterated until no outliers remain. 

The Grubbs test is defined under the null hypothesis (H0) that there are no outliers in the 

dataset; the test statistic is: 
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with Y and s denoting the sample mean and standard deviation, respectively. Therefore, the 

Grubbs test detects the largest absolute deviation from the sample mean in units of the sample 

standard deviation
15
.  

With a two-sided test, the null hypothesis of no outliers is rejected if:  
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with )2),2/((
2

−NNt αααα denoting the critical value of the t-distribution with (N-2) degrees of 

freedom and a significance level of α/(2N).  
 

After running the Grubbs test, 426 observations turned out to be outliers for the K/E variable 

and 613 for the C/E variable (54 outliers turned out to be common to both the variables). 

Therefore, at the end of the process, we ended up with a final dataset comprising 1,809 

companies (1,170 US and 639 EU, for a total of 16,079 observations). 

 

Table A.1 reports the distribution of the retained firms and observations across countries. 

                                                 
14
 The default number of iterations is 16,000. 

15 
The Grubbs test can also be defined as one of the following one-sided tests:  

- test whether the minimum value is an outlier: 
s

YY
G

min−
= with Ymin denoting the minimum value;  

- test whether the maximum value is an outlier: 
s

YY
G

−
= max

 with Ymax denoting the maximum value. 
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Tab. A.1: Distribution of firms and observations across  

countries in the final version of the dataset 
 

COUNTRY FIRMS OBSERVATIONS 

AUSTRIA 16 51 

BELGIUM 20 82 

CZECH REPUBLIC 1 4 

DENMARK 21 152 

ESTONIA 1 3 

FINLAND 41 157 

FRANCE 54 279 

GERMANY 141 749 

GREECE 11 41 

HUNGARY 3 12 

IRELAND 8 55 

ITALY 5 19 

LUXEMBOURG 3 9 

NETHERLANDS 25 165 

SLOVENIA 1 4 

SPAIN 3 7 

SWEDEN 62 386 

UNITED KINGDOM 223 1,299 

EU 639 3,474 

USA 1,170 12,605 

 


