
Technology, Property Rights and Organizational

Equilibria: An Explanation of the Co-existence of

Open and Closed-source Productions

Fabio Landini∗

e-mail: landini4@unisi.it

Version 1.1†

January 24, 2011

Abstract

This paper presents a model on the viability and persistence of open
and closed-source productions in the software industry. Starting from
some empirical evidences on the organizational diversity that character-
izes this sector of the economy, the paper answers one main question:
why do open and closed-source productions co-exist? Drawing on a two-
ways causality between technology and property rights the model shows
that: (a) for a sufficiently high degree of technical mellaebility (i.e. high
substitutability between production inputs) there exist two asymptoti-
cally stable organizational equilibria, namely an open and a closed-source
production; (b) the convergence toward one equilibrium rather than the
other is affected by the cost advantages of the two productive solutions,
including rents and design costs; and (c) in the presence of conflicting in-
terests among developers, there exist a wide range of parameters for which
production inefficiency is persistent. The paper adds to the previous lit-
erature on free/open-source software in three ways: first, it presents open
and closed-source productions as two distinct production systems char-
acterized by a specific combination of technology and property rights;
second, it explains the emergence of open-source productions considering
also a causality that runs from property rights to technology; and third, it
suggests that institutional complementarities can motivate the sustained
co-existence of open and closed-source productions despite of their rela-
tive (in)efficiency.

Key words: Open-source software, organizational equilibria, institutional
complementarities, transaction costs, evolutionary game theory

JEL Classification Numbers: C73 (Evolutionary Games); D23 (Trans-
action Costs, Property Rights); L17 (Open-source Products and Markets);
O34 (Intellectual Property Rights).

∗Department of Economics, University of Siena.
†This paper was completed while the author was visiting the Berkman Center for Internet

and Society at Harvard University. The author is grateful to Ugo Pagano, Sam Bowles and
Yochai Benkler for their useful comments. The usual caveat applies.

1



1 Introduction

Economists, since long time, have been interested in the existence of different

ways of organizing production (Coase, 1937). In particular, using as a bench-

mark the view according to which ‘in a competitive economy it really does not

matter who hires whom’ (Samuelson, 1957, p. 894), several authors have gradu-

ally relaxed the standard assumptions about market completness and discussed

the viability and persistence of organizations based on different property rights

regimes (Alchian and Demsetz, 1972; Demsetz, 1966; Grossman and Hart, 1986;

Jensen and Meckling, 1976; Craig and Pencavel, 1992; Dow, 1993; Dow and Put-

terman, 2000; Pagano and Rowthorn, 1994a; Gintis, 1989; Bowles and Gintis,

1993). Although such a debate may seem to some extent an out-of-date residual

of the economy of “grain and steal”, it is not necessarily so. In fact, it turns out

that the existence of organizational diversity is an issue that plays a central role

in one of the key sectors of the present knowledge economy, namely the software

industry.

As it is well known to both scholars and practitioners there exist nowadays

two main ways of profitably organizing the production of software: to rely on flat

communities of self-selected peer producers that develop software components

through an exchange based on non-exclusive copyrights claims; or, to rely on a

conventional firm-based production in which one (or few) subject owns exclusive

copyrights claims on the software and the workforce is hired and coordinated

through managerial hierarchies. The former is addressed at the production of

free/open-source software (FOSS) and I will define it as open-source production.

The latter is addressed at the production of closed-source software and I will

define it as closed-source production. Despite the fact that both forms of pro-

duction have existed since long time1, none of them seems to effectively prevail

in the software industry. Why, then, both open and closed-source productions

exist?

In the literature on FOSS (for a detailed review see Rossi, 2006) most of the

theoretical models dealing with the viability of open-source production have

placed particular importance on the specific features of the technology, i.e. the

set of tools, processes and procedures used in production. The general approach

to the issue, in particular, has been to take as given the technological framework

in which open-source productions take place (i.e. the widespread diffusion of

the Internet, the low cost of IT and the modularity of code architecture), and

1The free sharing of software among programmers (mainly working for public institutions
such as universities) was an established practice in the early 70’s, and it has survived side by
side to the production of proprietary software (although with relative upside down) all the
way through the present days. On this point see Lerner and Tirole (2002, 2005) and McGowan
(2001)

2



to compare the cost advantages that open-source productions can boast with

respect to closed-source productions. Examples in this stream of literature

include Benkler (2002, 2006) Johnson (2006), Baldwin and Clark (2006) and

Bessen (2006) among the others.

Looking at these contributions from the perspective of the theory of economic

organizations it is clear that, in a more or less explicit way, they represent an

adaptation to FOSS production of the standard New Institutional argument for

the distribution of organizational rights in the economy. According to this view

- see for instance Williamson (1985) - in a world of positive transaction costs

and contractual incompleteness, technologies are indeed non-neutral in regard

to the nature of property rights. Changes in the characteristics of the produc-

tion technology alter the nature of the information asymmetries among agents,

thereby influencing the nature and attribution of property rights. The latter,

in particular, go to the agents that, in because of their intrinsic features, can

best economize on transaction costs. When applied to FOSS this line of reason-

ing marks a point in favor of the viability of open-source productions for two

main reasons: first of all, programming is a knowledge-intensive and difficult-to-

monitor activity that can be better motivated if agents are residual claimants

over the output rather than hired workforce; secondly, software development is

a production process that heavily depends on the recombination of others’ ideas

and the latter, having a marginal cost equal to zero, can be more efficiently

exchanged through social sharing than through markets (Benkler, 2002, 2006).

Bringing this interpretation to its extreme consequences one should conclude

that, if in the present technological paradigm open-source production is rela-

tively more efficient than closed-source production - i.e. the same output can be

produced at a lower cost per unit of transaction, the former is inevitably going

to displace the latter as the standard way of developing software.

When compared with the actual trends of the software industry, however,

this interpretation fails. In particular, it cannot explain three stylized facts.

Fact 1. In the software industry the world’s top organizations produce both

open and closed-source software.

According to the Canonical Chief Operating Officier Matt Asay2, for instance,

both Oracle-Sun and IBM, despite being well established producers of propri-

etary software, have been investing substantial resources in open source projects.

Oracle-Sun is the primary developer behind Java (more than 6.5 million lines

of code), Solaris (over 2 million lines of code) and Open Office (approximately

2Matt Asay (2009). World’s biggest open-source company? Google, 2009. URL http:

//news.cnet.com/8301-13505_3-10354530-16.html. Last time checked: 29th of July, 2010.

3



10 million lines of code). IBM contributed more than 12.5 million lines of code

to Eclipse, not to mention Linux (6,3 % of total contributions), Geronimo and

other open-source projects. A similar support to open-source initiatives can be

observed on the side of SAP AG, the world leader in business management soft-

ware. As reported in the company’s website, the German firm has been deeply

involved in the Eclipse ecosystem since 2004 moving to the membership level of

strategic developer in 2009. In 2003, SAP AG, has also opened the source code

of its business database MaxDB to the MySQL community, except reverting

it back to closed-source in 2007. According to their official website, moreover,

among the active contributors to open-source projects appear HP (63), Adobe

(20), Microsoft (53) and Apple, which has developed an apposite repository of

open-source applications for Mac products named MacOS Forge. Despite of

the huge amount of resources invested to maintain this active support to open-

source projects, however, none of these companies has actually abandoned the

development of proprietary software. Then, the following question arises: Q1 -

If, given the technology, one type of production (let’s say open-source) is more

efficient than the other, why do the same organizations develop software using

both open and closed-source productions?

Fact 2. In each market segment of the software industry there often exist both

open and closed-source software.

Data on the trends of market shares over the last two decades are instructive in

this sense. According to the last Netcraft’s survey3, for instance, the market for

web servers has been steadily dominated by two software packages: the open-

source Apache with an average market share well above 50%, followed directly

by the closed-source Microsoft Web Server with a share constantly lower than

40%. The market for web browsers4 presents a similar although reverse trend:

the closed-source Internet Explorer has constantly been the market leader with

more than the 55% of the market, followed by the open-source Mozilla Firefox

which has gained shares going up until the 23% and lately by the open-source

Linux-based Google Chrome with the 8%. In the market for database the actual

presence of open and closed-source software is again undeniable, with the open-

source MySQL contending the lead to the closed-source Microsoft SQL Server

and Oracle. A similar situation can be observed in the market for operating sys-

tems (OS), where the various distributions of the open-source Unix/Linux OS

have progressively extended their usage share and are nowadays well accepted as

3Netcraft, web server survey, July 2010. URL http://news.netcraft.com/archives/

2010/. Last time checked: 29th of July, 2010.
4NetApplications, Top browser share trend, 2010 http://marketshare.hitslink.com/

browser-market-share.aspx?qprid=1. Last time checked: 29th of July, 2010.

4



direct competitors of the closed-source Microsoft Windows5. In general, the pic-

ture that one can get by looking at these as well as other segments of the software

industry (e.g. office suites, finance and accountability packages, mail servers)

is that open and closed-source software packages simply co-exist. Moreover,

such co-existence tends to reproduce also in newly emerging market segments.

Recent data collected by Gartner, Inc.6 on the market for mobile operating

systems (the ones that one can find on smartphones), for instance, highlight the

presence of five main competitors: Nokia Symbian (44%) and Google Android

(10%) on the side of open-source, and Apple iPhone (15%), RIM Blackbarry

(19%) and Microsoft Windows Mobile (7%) on the side of closed-source. In the

light of these data, then, another question arises: Q2 - If, given the technol-

ogy, organizational rights flow so as to increase production efficiency, why do

(almost) technologically equivalent packages get to be steadily produced both as

open and closed-source software?

Fact 3. In the software industry, software that is born as closed-source (open-

source) is highly likely to remain closed-source (open-source).

Figure 1 has been constructed on the basis of a sample of 164 software pack-

ages from six different market segments: web browsers, database, office suites,

finance and accountability packages, operative systems and web servers (see the

Appendix for a complete list). These software packages were divided in four cat-

egories according to the type of license used for their 1.0 and present versions.

“Closed-closed” stands for software that has been licensed as closed-source both

in its 1.0 and present version. “Closed-open” stands for software that has been

licensed as close-source in its 1.0 version and as free/open-source in its present

version. And so on. Data refer to a time-span that goes from 1980 until 2010.

Figure 1 shows the frequency distribution for these four different categories. As

it is easy to see most of the software that is distributed as either free/open-

source or closed-source in its inception, continues to be distributed under the

same licensing terms even today (almost 90% of the total). Such a result is

obviously affected by the fact that the most popular free/open-source licenses

expressly limit the possibility of “closing” the source code once it is freed. How-

ever, even limiting the attention at closed-source software alone, the data is

impressive: more than the 90% of the considered software packages exhibits

5For data on both database and OS market shares see David A. Wheeler (2007), Why
Open Source Software/Free Software (OSS/FS, FLOSS, or FOSS)? Look at the Numbers!
URL http://www.dwheeler.com/oss_fs_why.html. Last time checked: 16th of August, 2010.

6Gartner Inc., Competitive landscape: Mobile devices, 1q10, 2010. URL http://www.

gartner.com/DisplayDocument?doc_cd=200946l\ref=g_rss. Last time checked: 29th of July,
2010.

5



Figure 1: Frequency distributions of four different paths of software develop-
ment.

path dependency in the way in which it is developed. Once again this result

is inconsistent with the above described arguments concerning the viability of

open-source production: Q3 - If, given the technology, open-source production

is more efficient than closed-source production, why so few software packages

change from the latter to the former?

The aim of this paper is to offer an explanation for the viability and per-

sistence of both open and closed-source productions which is able to account

for Facts 1, 2 and 3 above, and that, as a consequence, provides an answer to

questions Q1, Q2 and Q3. In particular, it will be argued that the co-existence

of these two different organizations of production can be explained by integrat-

ing the arguments based on a causality that runs from technology to property

rights, with a simultaneous causality that runs from property rights to technol-

ogy. This, following Pagano (1993) and Pagano and Rowthorn (1994b), amounts

at qualifying open and closed-source productions as two distinct organizational

equilibira. From this result, two main implications follow: first, the viability of

open and closed-source productions is strongly affected by the degree of techni-

cal malleability; second, it can well happen that production inefficiency may be

asymptotically persistent.

The structure of the paper is the following. Section 2 introduces the con-

cept of organizational equilibria and some definitions that will be used in the

remaining parts of the paper. Section 3 presents a formalization of the argu-

ments introduced in Section 2 by framing the model presented by Pagano and

Rowthorn (1994b) in a two-players game and finds the conditions under which

multiple organizational equilibria exist. Such conditions are then used in order

to interpret some of the empirical facts outlined above. Section 4 studies the

asymptotic stability of these equilibria. This is done, in particular, by assuming

6



that the conditions for the existence of multiple organizational equilibria are

satisfied and by inserting the two-players game developed in Section 3 into an

evolutionary dynamics with intentional idiosyncratic plays. Section 5 finally

concludes.

2 Orgnanizational equilibria

Ugo Pagano (1993) defines organizational equilibria as situations in which two

conditions are simultaneously met: (a) the technological characteristics of the

resources used in production bring about a set of rights which is consistent with

this technology; and (b) the set of rights brings about technological character-

istics of the resources which are consistent with these rights. This concept is

developed by integrating two distinct arguments. The first is the standard New

Institutional argument according to which technology causes property rights, i.e.

in an organization of production property rights optimally adjust to the char-

acteristics of the resources employed. The second is the so-called “reversed”

argument according to which property rights causes technology, i.e. in an orga-

nization of production the characteristics of the resources employed optimally

adjust to the initial distribution of property rights7. When both causalities hold,

property rights self-reinforce via technology and vice-versa, and organizational

equilibria emerge.8

A more formal definition of organizational equilibrium can be worked out as

follows. Define an organization of production as a production system charac-

terized by a specific combination of two domains: the property rights domain

R and the technology domain T . Write Π(R, T ) as the profit obtained under a

particular organization of production. Then,

Definition 1 An organization of production is a an organizational equilibrium

if (a) R maximizes Π(R, T ) given T; and (b) T maximizes Π(R, T ) given R.

In order to apply this definition to the study of open and closed-source pro-

ductions two main aspects need to be clarified. Firstly it is important to notice

that, in the domain of property rights, the distinction between open and closed-

source production goes beyond the simple licensing terms on the software, so

far as to include employment contracts and hardware ownership. In particular,

while open-source productions rely on non-exclusive copyrights claims coupled

7The reversed causality running from property rights to technology as been suggested also
by Marglin (1974), Rowthorn (1974), Putterman (1982), Bowles and Gintis (1983) and Bowles
(1985).

8For a formal discussion of organizational equilibria see Pagano and Rowthorn (1994b).

7



with limited use of employment contracts and decentralized hardware owner-

ship, closed-source productions present the opposite characteristics with exclu-

sive copyrights claims combined with extended use of employment contract and

centralized hardware ownership (on this point see Benkler, 2006). This dis-

tinction is important because it affects the costs faced by these two ways of

organizing software development. On this basis, the following definitions can be

introduced

Definition 2. A set of property rights RO ∈ R is an open-source regime if it

combines a marginal (or absent) use of employment contracts with non-exclusive

copyrights claims and decentralized hardware ownership.

Definition 3. A set of property rights RC ∈ R is a closed-source regime if

it combines a wide use of employment contracts with exclusive copyrights claims

and centralized hardware ownership.

Secondly it is important to point out that, in the domain of technology, there

also exist a significant difference between open and closed-source productions. In

this sense the two main technological dimensions that need to be considered are

the design of the code architecture and the organization of production inputs.

While open-source productions adopt a relatively modular technology charac-

terized by a finely-grained code architecture combined with a decentralized deci-

sion making process, closed-source productions employ a relatively non-modular

technology characterized by a coarsely-grained code architecture coupled with

a fairly centralized decision making process.9 On this basis, we can once again

introduce the following definitions

Definition 4. A technology TM ∈ T is modular if it combines a finely-grained

code architecture with a polyarchical governance structure

Definition 5. A technology TL ∈ T is non-modular if it combines a coarsely-

grained code architecture with a hierarchical governance structure

Given these definitions, open and closed-source productions can be repre-

sented as organizations of production characterized by the combinations {RO, TM}
and {RC , TL} respectively. The question, at this point, is to understand whether

they also represent two distinct organizational equilibria. Before moving to for-

9Such differences in the design of the technology has been made clear by Raymond (1999)
and his evocative image of the “Cathedral and the Bazaar”. For a discussion on the effects of
modularity in open-source collaboration see also Langlois and Garzarelli (2008). For a more
general treatment of modularity in decomposable systems see Simon (1962)

8



mal modeling, we can try to address this point by considering the two arguments

on the basis of which Definition 1 has been worked out and evaluating how they

would explain these two different organizations of production.

Let’s start from the New Institutional argument according to which technol-

ogy causes property rights, and let’s consider a relatively modular technology

first. In this case one could argue that an open-source regime is likely to emerge

because it is more efficient than a closed-source regime, where efficiency depends

on two main factors. First, as suggested by Benkler (2002, 2004), the presence

of commons-based proprietary claims gives way to a system of production that

has a lower cost per transaction compared to market or firm-based productions,

and has therefore a cost advantage when, as in the case of a modular technology,

the number of software modules is high. The main reason for this is that, being

based on extended social sharing, self-selection and usage of local knowledge,

the former requires a lower degree of formalism and less information exchange in

the communication among software developers. Second, as argued by Raymond

(1999), in the presence of sufficient technological modularity there is much to

gain in terms of software quality by adopting non-exclusive copyrights claims

and thus opening the access to the source code at a wide and differentiated

community of developers. In relation to the latter point, Hong and Page (2004)

have also offered a formal proof of the productivity of collective diversity in

modular problem solving.

A different conclusion, however, could be obtained if a relatively non-modular

technology is available instead. In this case one could argue that a closed-source

regime is more appropriate than an open-source regime in because of one main

factor, that is the possibility of motivating programmers through monetary com-

pensations and threat of dismissal. The presence of a coarsely-grained code

architecture, in fact, makes each software module rather complex and labor de-

manding. When employment contracts are only marginally used - as in the case

of an open-source regime - such modules are subject to individual free-riding

and are likely not to be developed (Benkler, 2002) (on this point see also den

Besten et al., 2008 for empirical evidence). On the contrary, when the labor

force is hired - as in the case of a closed-source regime, the contract itself and

the associated wage can be used in order to extract individual effort and avoid

free-riding. Under this regime software modules are likely to be developed and

production to take place. On this basis, and differently from before, one could

conclude that, once a relatively non-modular technology is given, a closed-source

regime instead of an open-source one is likely to emerge.

This way of reasoning, however, can be inverted. Following the so-called

“reversed” argument, in fact, it can well be that it is property rights that cause

technology, and not the reverse. Let’s assume, for instance, that an open-source

9



regime is given in the first place and that technology needs to be designed

accordingly. In this case one could argue that the design of a modular technology

becomes a key requirement in order to ensure that the software is effectively

developed on the basis of two main factors. First, as suggested by Benkler (2002)

and Baldwin and Clark (2006), the presence of a finely-grained code architecture

is essential in order to ensure that work is performed on the basis of motivations

different from the monetary compensations included in a standard employment

contract. Second, as pointed out by Giuri et al. (2008), the evolution of a

polyarchical governance structure is a necessary condition for informal authority

to be respected in virtual teams. When both these factors are considered the

conclusion goes in the same direction as the one observed above, although in this

case the causality is inverted: once an open-source regime is given, a relatively

modular technology is likely to emerge.10

But, once again, a similar line of reasoning could be employed also under

the assumption that a closed-source regime is given in the first place. In this

case the convenience of a relatively non-modular technology can be motivated

on two main grounds. First, as argued above, a reduction in the degree of

modularity decreases the number of software modules, and therefore it allows

the organization to economize on discrete transactions. Second, the presence

of a relatively coarsely-grained code architecture combined with a hierarchical

governance structure gives to the owner of the exclusive copyrights claim a

much stronger control over the software, which can become extremely important

especially if the latter has to be placed on the market. On this basis we obtain

again the same result observed under the New Institutional approach but a

different causal mechanism: once an closed-source regime is given, a relatively

non-modular technology is likely to emerge.

Which one of these two approaches to the problem is the correct? Discrimi-

nating between them is not an easy task. Most likely, both the New Institutional

and the “reversed” arguments are correct. When this is the case, there are rea-

sons to believe that open and closed-source productions qualify as two distinct

organizational equilibria. In order to give a formal representation of this re-

sult and to find the conditions under which multiple organizational equilibria in

software development exist we turn now to a simple model. The results of the

model will then be used in order to obtain some insights on the empirical facts

outlined in the Introduction.

10One example of the way in which this causality applies comes from the common practice
of refactoring the source code of a software before going open-source. Code refactoring, i.e.
the process of changing the non-functional attributes of a software in order to foster the
source code’s maintainability and extensibility, indeed entails an improved readability and a
modularization of the code architecture. The author is grateful to Yochai Benkler for pointing
out the analogy between code refactoring and the “reversed” argument described above.

10



3 The model

Let’s consider two agents r and t who project to develop a software. In order

to do so they need to adopt an organization of production, namely they need

to make a choice within two domains of the choice set S: the property rights

domain R ∈ S, in which they choose whether to adopt a closed-source regime

(RC) or an open-source regime (RO), i.e. R = {RO, RC}; and the technology

domain T ∈ S, in which they choose the design of the production technology. For

the sake of simplicity I restrict the model to a technology with only two design

variables: the degree of modularity in the code architecture M ∈ (0, 1), which is

measured by the ratio between the number of independent tasks and the total

number of tasks performed by the software; and the degree of labor commitment

necessary to develop the software modules L ∈ (0, 1), which is measured by the

portion of daily time devoted to programming each module (i.e. collection of

interdependent tasks). In this framework M and L can be interpreted as two

factors of production in the standard economic sense. M and L, in fact, can

to a certain extent be considered substitute under the condition that, for a

given size of the software, an increase in modularity decreases the size of each

software module and therefore reduces the amount of work needed to develop

that module. Under this interpretation the nature of a generic technology T j

is defined by the factors proportion (or intensity) T j = M j/Lj . A technology

T j is thus defined as relatively modular when compared to a technology T k if

and only if T j > T k. The idea is that while in a modular technology highly

modular software (high M j) is developed by programmers devoting relatively

small portions of time to programming (low Lj), in a non-modular technology

weakly modular software (low Mk) is developed by programmers devoting big

portion of their time to programming (high Lk). In this framework the nature

of the choice that needs to be made in domain T is to set the factors proportion

M/L.

Both M and L have positive costs. Under the assumption that complete

contracts cannot be written, one typology of costs can be classified as transac-

tion costs. In this category, I will call m the cost of modularity, i.e. the cost

associated to the transfer of information among developers working at different

software modules, and l the cost of labor, i.e. the cost associated with the ex-

traction of effort from the labor force. In line with the discussion presented in

Section 2, an open-source regime RO has a cost advantage x in terms of informa-

tion transfers, while a closed-source regime RC has a cost advantage y in terms

of labor extraction. Notice that the latter condition does not mean that labor is

cheaper in closed-source production than in open-source production. Rather, it

means that work effort is more cheaply extracted in a closed-source production

11



system than in a open-source production system, where the cost is measured

both in terms of monetary expenditure (e.g. the wages paid to the employees

hired to work on FOSS projects) and decrease in profit due to unproductive

work (e.g. free-riding). The cost function, thus, assume the following form:

C(M,L,R) =


(m− x)M + lL, if R = RO

mM + (l − y)L, if R = RC
(1)

where m > l − y and l > m − x. The latter conditions mean that there exist

cost advantages in terms of production factors not only between but also within

production systems. In addition, I will consider also a second type of costs

which are associated with the design of the code architecture. In particular, I

will call d the design cost of modularity which is paid by the agent involved in

the design of the production technology, namely (as we will see) agent t.11

The return obtainable from production is modeled in the following way.

Software gives rise to two types of returns: returns from the services sold as

complement to the software, which are captured by a function Q(M,L) and are

the same independently of the licensing system adopted; and a rent obtainable

from the sale of proprietary software which is captured by a function z(R,L)

taking the following form:

z(R,L) =


0, if R = RO

zL, if R = RC
(2)

where z > 0 captures the positive effects of labor commitment on the rent from

software sales. The idea in the latter case is that, by increasing the control

over the software of the agents in possess of the exclusive copyrights claims, a

greater labor commitment increases the software’s marketability. While returns

from services are equally shared, the rent from sales is appropriated only by the

agent owning the copyrights, in our case agent r. Agents are assumed to be risk

neutral and software price is equal one.

Under these assumptions, the payoffs to agent r and t can be respectively

written as follows:

πr(R, T (M,L)) = z(R,L) +
[Q(M,L)− C(M,L,R)]

2
(3)

πt(R, T (M,L)) =
[Q(M,L)− C(M,L,R)]

2
− dM (4)

11A similar distinction between transaction and design costs of production technologies is
presented in Baldwin and von Hippel (2009).

12



Given equations (3) and (4), I model the selection process leading to the adop-

tion of an organization of production as follows. Agents r and t make an inde-

pendent choice in the property rights and technology domain respectively. To

lend some concreteness to the model we can imagine r as being the agent having

the original idea about the software and thus deciding how to copyright it, and

t as being the engineer designing the technology through which the software is

to be produced. In both domains, choices are made in order to maximize pay-

off, i.e. r will choose the property rights regime that maximizes πr for a given

technology (Ass1 ), while t will choose the technology that maximizes πt for a

given property rights regime (Ass2 ). Notice that, abstracting from the problem

at stake, r stands as representative of the causality mechanism that runs from

technology to property rights (the New Institutional argument), while t stands

as representative of the causality mechanism that runs from property rights to

technology (the “reversed” argument).

In the property rights domain R, given (3), (4), Ass1 and a generic technol-

ogy T j , r will choose to adopt an open-source regime as long as πr(R
O, T j) ≥

πr(R
C , T j), which is the case if and only if:

T j =
M j

Lj
≥ y + 2z

x
(5)

Similarly, r will choose to adopt a closed-source regime as long as πr(R
C , T j) ≥

πr(R
O, T j), which is the case if and only if:

T j =
M j

Lj
≤ y + 2z

x
(6)

From equation (5) and (6) the following proposition can be derived:

Proposition 1. In the domain of property rights R, the incremental benefit

from choosing an open-source regime RO (instead of choosing RC) is greater

when a technology characterized by a relatively higher intensity of modularity

M is selected in the domain T , i.e. when TM is selected instead of TL.

Proof. For a given value of x, y and z, consider two technologies TM and

TL such that conditions (5) and (6) are simultaneously satisfied, i.e. TM ≥
(y + 2z)/x ≥ TL. Then, it follows directly from (5) and (6) that:

πr(R
O, TM ) ≥ πr(RC , TM ) (7)

πr(R
C , TL) ≥ πr(RO, TL) (8)

Adding equations (7) and (6) side by side and rearranging, we obtain the fol-

13



lowing relation:

πr(R
O, TM )− πr(RC , TM ) ≥ πr(RO, TL)− πr(RC , TL) (9)

which proves the proposition �.

Let’s now consider the domain of technology. Under Ass2, t will set M and

L so as to maximize πt(R
C , T (M,L)) and πt(R

O, T (M,L)). Let:

(MC , LC) = arg maxπt(R
C , T (M,L)) (10)

(MO, LO) = arg maxπt(R
O, T (M,L)) (11)

Then, from equation (3) and (4) above and under standard assumption about

the shape of the marginal product, i.e. ∂2Q/∂M2 < 0 and ∂2Q/∂L2 < 0,

it follows that MC ≤ MO and LC ≥ LO. From the latter conditions it is

straightforward to derive the following relation:

TO =
MO

LO
≥ MC

LC
= TC (12)

Relation (12) in turn implies that:

Proposition 2. In the domain of technology T , the incremental benefit from

choosing an M -intensive technology TM (instead of choosing an L-intensive

technology TL), is greater when an open-source regime is selected in the domain

R, i.e. when RO is selected instead of RC .

Proof. Consider two technologies TM and TL such that conditions (12) is sat-

isfied, i.e. TM ≥ TL. Then, it follows directly from (12) that:

πt(R
O, TM ) ≥ πt(RO, TL) (13)

πt(R
C , TL) ≥ πt(RC , TM ) (14)

Adding equations (14) and (13) side by side and rearranging, we obtain the

following relation:

πt(R
O, TM )− πt(RO, TL) ≥ πt(RC , TM )− πr(RC , TL) (15)

which proves the proposition �.

Under some continuity conditions of function π(.) and assuming that strat-

14



egy choices Sr = {RO, RC} and St = {TM , TL} have a partial order ≥ (see

Milgrom and Roberts, 1990), Propositions (1) and (2) imply that the game

G = {2, (Si, πi, i = r, t),≥} is supermodular. Furthermore, it can be proved12

that in G there exist two pure strategy Nash equilibria, namely {RO, TM} and

{RC , TL}. The first, {RO, TM}, is characterized by an open-source regime and a

relatively modular technology; I will call this equilibrium an open-source organi-

zational equilibrium. The second, {RC , TL}, is characterized by a closed-source

regime and a relatively non-modular technology; I will call this equilibrium a

closed-source organizational equilibrium. When these two equilibria exist, using

Aoki (2001)’s terminology, we would say that RO and TM as well as RC and

TL are institutional complements.

The technological conditions supporting the existence of multiple organiza-

tional equilibria in software development can be summarized in the following

proposition:

Proposition 3. (a) Suppose TO = TM ≥ (y + 2z)/x ≥ TL = TC . Then in

game G there exist two pure strategy Nash equilibria {RO, TM} and {RC , TL},
i.e. multiple organizational equilibria exist. (b) Suppose TO = TM ≥ TL =

TC ≥ (y + 2z)/x. Then in game G there exist only one pure strategy Nash

equilibria {RO, TM}, i.e. only an open-source organizational equilibria exists.

(c) Suppose (y + 2z)/x ≥ TO = TM ≥ TL = TC . Then in game G there

exist only one pure strategy Nash equilibria {RC , TL}, i.e. only a closed-source

organizational equilibria exists. (d) For any ratio (y + 2z)/x in game G there

exists at least one pure strategy Nash equilibrium, i.e. there always exist at least

one organizational equilibria.

Proof. Points (a), (b) and (c) follow directly from conditions (5), (6) and

(12) above. Point (d) is a direct consequence of points (a), (b) and (c) �.

Proposition 3 suggests that if the ratio between the cost advantages (y +

2z)/x falls into the closed intervals defined by the factors proportions employed

under the two different property rights regimes, two distinct ways of organizing

the production of software exist. The key question, then, becomes to under-

stand how likely it is that such condition obtains. Intuition suggests that the

‘malleability’ of the technology plays an important role in this respect because

it ensures that, for any given property rights regime, factors proportion can be

adjusted so as to improve efficiency. Under the standard assumption of decreas-

ing marginal product, in particular, it can be proved that:

12See Theorem 5 in Milgrom and Roberts (1990)

15



Proposition 4. (a) For any standard production function Q(M,L) and for

any set of costs (m, l, d), there exists at least one triple (x, y, z) such that mul-

tiple organizational equilibria exist. (b) If the elasticity of substitution is equal

zero, i.e. if M and L are perfect complements, then there exist only one triple

(x, y, z) such that multiple organizational equilibria exist. (c) If the elasticity of

substitution is infinite, i.e. if M and L are perfect substitutes, then any positive

triple (x, y, z) will imply that multiple organizational equilibria exist.

Proof. See Pagano and Rowthorn (1994b), Propositions (2), (3) and (4). �

The results contained in Propositions 3 and 4 tell us three main things

regarding the co-existence of open and closed-source production. First, multi-

ple organizational equilibria in software development exist for a wide range of

parameters’ value. Without assuming the extreme conditions of zero or infi-

nite elasticity of substitution, the presence of a fairly malleable technology is

in fact sufficient in order to ensure that both open and closed-source produc-

tions exist. Such a result, at least in principle, could explain the high degree

of organizational variety that we observe in the software industry. Second, the

degree of technological rigidity has important implications for the way in which

the production of software is organized. In particular, we have found that the

more malleable the technology, the more likely multiple organizational equilib-

ria exist. This could explain why the same organization often produces software

under different property rights regimes (Fact 1). Specific technological rigidi-

ties, in fact, may impose constraints on the way in which a particular software

can be developed and thus oblige organizations to adopt different organizations

of production for different software. Finally, the results of the model highlight

the existence of an institutional complementarity between property rights and

technology in software development. When this is the case, the emergence of

both open and closed-source productions is likely to follow a pattern that is

closely related to the biological theory of “punctuated equilibria” according to

which change cannot be approached by individual, gradual modifications, but

it requires simultaneous, complementary shocks (Eldredge and Gould, 1972).

In relation to the present discussion these characteristics imply that: first, to

plan a shift from a closed to an open-source production (and vice-versa) is rather

complex, because it requires simultaneous changes in different organizational do-

mains; second, in analogy with speciation, the effective emergence of open and

closed-source productions is likely to be driven by major institutional shocks

followed by period of gradual adjustment. These two points could partially

explain the path dependency that we observe in the organization of software

development (Fact 3). Moreover, they suggest that credible explanations for

16



the emergence of open-source production should rely on simultaneous shocks

occurred both on the technology and property rights domain, e.g. the develop-

ment of the General Public License (GPL) hand-in-hand with the commercial

diffusion of the Internet in the late 80’s.

4 Dynamics and evolutionary stability

In this section I study the asymptotic stability of organizational equilibria. In

order to do so I model the dynamics behind the co-evolution of property rights

and technology starting from the assumption that multiple organizational equi-

libria exist. Such a dynamics, in particular, could be useful in order to address

two main points: first, why technologically equivalent software get to be steadily

produced under different property rights regimes (Fact 2); second, why and how

in the presence of multiple organizational equilibria production efficiency may

no longer be achieved.

Instead of assuming an exogenous law of motion for both domains R and T ,

I have chosen to model the co-evolution of property rights and technology by

adopting the now-standard evolutionary game theoretic approach (Bowles, 2006;

Gintis, 2009). Besides being rather simple, this approach has the advantage of

micro-founding the evolution of institutional forms on a decentralized decision

making process based on credible behavioral rules. This is obviously done at the

cost of introducing some degree of abstraction, in my case the substitution of

a causality mechanism between technology and copyrights with a participatory

decision process based on voting.

The structure of the evolutionary game is the following. I consider a large

group (or population) of agents of size n, which is divided in two sub-populations

r and t of size nr and nt respectively (n = nr+nt).
13 Once again agents have to

choose the organization of production to be adopted in software development,

i.e. they play a version of the game described in Section 3. This time, however,

the choice does not concern only two agents but the whole group and is based on

a voting mechanism. Agents in sub-population r (r-agents) vote in the property

rights domain and have two options: an open-source regime or a closed-source

regime. Agents in sub-population t (t-agents) vote instead in the technology

domain. For the sake of simplicity and without loss of generality, I assume that

there exist perfect substitutability between M and L and therefore only two

technologies are available to t-agents: a modular technology TM (with MM = 1

and LM = 0) and a non-modular technology TL (with ML = 0 and LL = 1). In

13For the easiness of notation I have decided not to introduce new variables. Notice that,
differently from he previous section, r and t refer to the two sub-populations and not to
individual agent.

17



Technology (t) (→)

Copyright (r) (↓) Modular (T = TM ) Non-modular (T = TL)

Open-source (R = RO)
Q− (m− x)

n
,
Q− (m− x)

n
−

d

nt

Q− l
n

,
Q− l
n

Closed-source (R = RC)
Q−m
n

,
Q−m
n

−
d

nt

Q− (l− y)
n

+
z

nr

,
Q− (l− y)

n

Table 1: Stage game matrix of payoffs. {RO, TM} and {RC , TL} are Nash
equilibria in pure strategies. Note: each cell of the matrix identifies a different
organization of production; the payoffs reported are the ones that the agents in
the two sub-populations would get if production were to take place under each
alternative organization of production.

standard game theoretic terms each voting option represents a strategy available

to agents in their own domain of choice.

Individual votes are expressed on the basis of the payoffs defined by equations

(3) and (4) with the exception that this time the net revenue from services is

divided over n, while the rent and the design cost are divided over nr and

nt respectively. By substituting into equations (3) and (4) the alternatives

available in both the property rights and technology domains, we obtain the

payoffs matrix reported in Table 1 which defines the stage game. In order to

make the problem interesting I assume d ≤ x/ξ where ξ = n/nt. Moreover, I

assume m = l.

Under these conditions, the stage game has two Nash equilibria in pure

strategies, namely {RO, TM}, that is, an open-source organizational equilibrium

and {RC , TL}, that is, a closed-source organizational equilibrium. These two

equilibria qualify as organizational conventions, meaning that conforming to it

is a mutual best response as long as most members of each sub-population (r

and t) expect most members of the other to conform to it.

The dynamics of voting is modeled as follows. At the beginning of every

time period τ agents express an individual and autonomous vote in their own

domain of choice. At τ0 such votes are exogenously determined by causes not

expressly modeled (it can be due to preferences or previous experience). Then,

for any τ > τ0, each agent updates her vote following the updating process

described below.

Once votes are expressed agents are paired across the two sub-populations to

compare their individual decisions. To lend some concreteness to the model we

can imagine such pairings as being periodic meetings during which “inventors”

and engineers discuss the costs and benefits of software production. In the

course of such meetings each agent receives two pieces of information. The first

18



one is the distribution of votes in each sub-population. The second one consists

of the payoffs reported in Table 1 - i.e. the payoff that each agent would receive

if the software were to be developed under each organization of production.

Such payoffs, however, do not immediately translate in individual earnings since

production takes place only when “near” unanimity obtains. Writing ρ and ω

the fractions of agents voting RO and TM respectively, “near” unanimity obtains

when the following conditions hold: ρ < ε or ρ > 1− ε and ω < ε or ω > 1− ε
with ε > 0 being arbitrarily small, i.e. when only a negligible portion of agents

disagrees with the majority in both domains. Once production takes place,

agents earn the payoffs associated with the organization of production chosen

by the majority, i.e. version 1.0 of the software comes out. In this framework

the “near” unanimity condition can be simply interpreted as a managerial rule

which ensures that consistent practices are maintained within the group.

The process leading to a change in vote is then modeled as a standard

payoff monotonic updating. At the beginning of every time period τ > τ0 each

agent in both sub-populations can use the two pieces of information obtained

in the previous period in order to compute her expected final payoff, where

expectations are formed on the basis of the distributions of votes in the other

sub-population. Using the payoffs in Table 1 the expected payoff to agents

voting TM and TL can be written as

πM (ρ) = ρ

[
Q− (m− x)

n
− d

nt

]
+ (1− ρ)

[
(Q−m)

n
− d

nt

]
(16)

πL(ρ) = ρ
(Q− l)
n

+ (1− ρ)

[
Q− (l − y)

n

]
(17)

Similarly, the expected payoffs to agents voting RO and RC are respectively

πO(ω) = ω

[
Q− (m− x)

n

]
+ (1− ω)

(Q− l)
n

(18)

πC(ω) = ω
(Q−m)

n
+ (1− ω)

{[
Q− (l − y)

n

]
+

z

nr

}
(19)

These expected payoff functions are reported in Figure 2, assuming x > y. Once

such functions have been computed and before choosing on a new vote, each

agent meets with another agent randomly selected from her sub-population and

compares the respective decisions. For instance, an agent a in sub-population t

has the opportunity to observe the vote expressed by another agent, named b,

and to know her expected payoff. If b expressed the same vote as a, a does not

update. But if b expressed a different vote, a compares the two expected payoffs

and, if b has a greater expected payoff, switches to b’s vote with a probability

19



Figure 2: Expected payoffs to agents from sub-populations r and t. Note that ω
and ρ are respectively the fractions of agent voting TM and RO in the previous
period.

equal to β > 0 times the payoff difference, retaining her own vote otherwise.

While this updating process is not very sophisticated, it may realistically re-

flect individual cognitive capacities and it ensures that the standard economic

assumption of utility maximization is preserved - i.e. each agent votes for the

outcome that, given the distribution of vote in the other sub-population, maxi-

mizes her expected payoff.

Once this updating process is defined it is easily shown (see Bowles, 2006)

that the state of the population, which in any time period τ is given by {ρτ , ωτ},
evolves according to the following system of replicator equations:

dρ

dτ
= ρ(1− ρ)β(πO(ω)− πC(ω)) (20)

dω

dτ
= ω(1− ω)β(πM (ρ)− πL(ρ)) (21)

Given equations (20) and (21) we are mainly interested in the stationary states

of the population, namely the states for which dρ/dτ = 0 and dω/dτ = 0. Such

states qualify as fixed-points of the dynamical system, and as voting equilibria

of the population. It is easy to see that dρ/dτ = 0 for ρ = 0, ρ = 1 and ω = ω∗,

while dω/dτ = 0 for ω = 0, ω = 1 and ρ = ρ∗, where

ω∗ =
y + δz

x+ y + δz
(22)

ρ∗ =
y + ξd

x+ y
(23)

20



Figure 3: Asymptotically stable states and out-of-equilibrium dynamics. Note:
the arrows represent the disequilibrium adjustment in the number of agents
voting in favor of open-source production (horizontal movements for the domain
of copyrights and vertical for the domain of technology).

and δ = n/nr. Because d ≤ x/ξ, both ω∗ and ρ∗ are included in the closed inter-

val [0, 1]. The vector field in Figure 3 offers a graphical representation of such

solutions, where the arrows indicate the out-of-equilibrium adjustment. The

state {ρ∗, ω∗} is stationary, but is a saddle: small movements away from ρ∗ and

ω∗ are not self-correcting. (Two additional unstable stationary states, namely

{1, 0} and {0, 1} are of no interest) The asymptotically stable states are {1, 1}
(corresponding to an open-source organizational equilibrium, i.e. {RO, TM} in

Table 1) and {0, 0} (corresponding to a closed-source organizational equilibrium,

i.e. {RC , TL} in Table 1). On this basis, the following holds:

Remark 1. In the evolutionary game correspondent to the stage game G there

exist only two asymptotically stable voting equilibria: open-source production,

i.e. {1, 1}; and closed-source production, i.e. {0, 0}.

Under this formulation, there being more than one absorbing state, the dy-

namic process is non-ergodic, i.e. its long-run average behavior is dependent on

initial conditions. If the population starts with a distribution of votes in the

area above the dashed downward-sloping line in Figure 3, i.e. in the basin of

attraction of {1, 1}, the population will adopt an open-source production. On

21



the contrary, if the initial state is a point in the area below the dashed line, i.e.

in the basin of attraction of {0, 0}, the population will adopt a closed-source

production. While such a dynamics may offer some insights on the reasons why

organizations exhibit path dependency in the way in which new software is de-

veloped (Fact 3), e.g. their members have formed preferences in favor of one

organization of production rather than the other, it does not explain why a spe-

cific organization of production is adopted in the first place. In order to address

this point we need to transform the dynamical system into an ergodic process

and, following Bowles (2006) and Naidu et al. (2010), I do so by introducing

the possibility that agents engage in intentional idiosyncratic plays.

Suppose that every period there is a probability λ ∈ (0, 1) that each agent

is selected to undertake an intentional non-best response meant at explicitly

influencing the voting process in favor of the organization of production that she

prefers, i.e. the one that ensures the greatest individual payoff. This transforms

the dynamics into an ergodic process.

If one organization of production ensures to all agents in both sub-populations

a payoff greater than the other, once such a organization is adopted no idiosyn-

cratic plays occur and the population will remain in that state forever. In line

with the Neo-institutional argument discussed in Section 2, therefore, highly

efficient and conflictless organizations of production tend to be favored in the

evolutionary dynamics.

The result is different, however, if we consider situations in which there exist

conflicts of interest between the agents belonging to the two sub-populations.

Let’s consider, for instance, the following parameter ranges:

x > y , d <
x− y
ξ

,
(x− y)

δ
< z < x− y − d (24)

Looking at the payoff in Table 1 the first three inequalities imply that t-agents

prefer {RO, TM} while r-agents prefer {RC , TL}; the third inequality means

instead that open-source production is more efficient than closed-source pro-

duction, where efficiency is measured in terms of joint surplus available to the

population as a whole. Under these conditions, when the population’s state is in

the basin of attraction of {1, 1}, the r-agents that are selected for idiosyncratic

plays have an incentive to vote for RC because in so doing they may induce their

best responding partners to vote TL next period. For the same reason t-agents

have an incentive to idiosyncratically vote for TM when the population’s state is

in the basin of attraction of {0, 0}. The combination of these effects may lead to

the “tipping” of the population from one absorbing state to the other. The state

at which the population will spend most of the time depends on the amount of

non-best responses necessary to induce the best-responding partners to change

22



their strategies, i.e. ω∗ for sub-population t and 1 − ρ∗ for sub-population r.

In particular, {1, 1} (and thus open-source production) is relatively persistent

if and only if ω∗ ≤ 1− ρ∗, which is the case when:

z ≤ x2 − y2 − ξ(x+ y)d

δ(y + ξd)
= z∗ (25)

where, for the ranges of parameter described by the conditions included in the

(24), z∗ > 0. From this result, it follows that:

Remark 2. In the evolutionary game correspondent to the stage game G, as-

suming that conflict of interests exists, there exist a z∗ = [(x2 − y2) − ξ(x +

y)d]/δ(y + ξd) such that if z ≤ z∗ open-source production is persistent.

The intuition behind Remark 2 is straightforward. So long as the rent ob-

tainable from the sale of proprietary software is sufficiently small, r-agents do

not have much to loose in adopting an open-source production and therefore are

more vulnerable to the idiosyncratic plays of their counterparts. At the same

time, since open-source production is less costly than closed-source production,

t-agents strictly prefer the former and will try their best to get it. The combi-

nation of these two effects, make open-source production at the same time more

likely to emerge and less likely to be abandoned.

The range of values for which open-source production is relatively persis-

tent strictly depends on two main factors: the design cost of modularity d and

the inverse of the relative sizes of the two sub-populations δ and ξ. For what

concerns d it is easily shown that ∂z∗/∂d < 0, so that open-source production

becomes relatively more persistent the lower the value of d. This result could be

used to interpret the impact of the so-called “digital revolution”: by enabling

a greater modularization of software component, the advent of digital comput-

ing has dramatically reduced d and has therefore facilitated the viability and

persistence of open-source productions. On this issue a similar point has been

raised also by Benkler (2002, 2006) and Baldwin and von Hippel (2009) among

the others.

With respect instead to δ and ξ, their impact on the dynamics is less clearcut.

In order to simplify the analysis, I reported in Figure 4 the value of z∗ (vertical

axis) for different combinations of δ and ξ, assuming x = 10, y = 2 and normal-

izing the size of the population to one (i.e. n = 1).14 On the horizontal axis is

reported the ratio δ/ξ = nt/nr, and the curves are drawn for d = 0.7, 0.5, 0.3.

The graph shows that, if we start from a situation in which the population is

14These values are chosen for convenience in such a way that the effects are expressed in
the right order of magnitude. The general results, however, do not depend on them.

23



Figure 4: Variation of z∗ as a function of the ratio nt/nr. Notice that for z ≤ z∗
open-source is persistent. The curves are drawn assuming x = 10, y = 2, and
n = 1. Three different values of d are considered: 0.7, 0.5 and 0.3. As the ratio
nt/nr increases, z∗ presents and inverted-U-shaped behavior, therefore making
open-source initially more and then less persistent for any given value of z.

composed mainly by r-agent and we progressively increase the ratio nt/nr, z
∗

first increases - therefore making open-source production relatively more persis-

tent for a given z, and then (after a certain threshold) decreases. The reasons

behind such a behavior are related to the combination of two main forces that

operate as the relative size of the two sub-populations changes. The first force

is associated with the effects on the value of the payoffs at the two stable equi-

libria. As nt increases and nr decreases, in fact, the share of the design cost

that goes to each t-agent in the case of open-source production diminishes, while

the share of the benefits remains constant (n is fixed). This makes open-source

production relatively more attractive. The same, obviously, holds for r-agents,

since a reduction in nr increases the share of the rent that would go to each of

them in the case closed-source production were to take place. For low value of

nt/nr, however, the effect of an increase in nt for t-agents is predominant over a

reduction in nr for r-agents, and the range of parameter for which open-source

production is persistent enlarges (i.e. z∗ increases).

After a certain threshold, however, this trend is inverted. As nt and nr begin

to have similar dimensions a further reduction in the share of design costs due

to an increase in nt is more than offset by the increase in the share of rent that

follows a reduction in nr, and z∗ diminishes. In addition, when nr becomes

particularly small there is a second force that starts to play a role against the

24



persistence of open-source production, which is associated with an increase in

the voting power of r-agents. For a given level of λ (i.e. the probability that an

agent is selected for idiosyncratic play), in fact, the smaller nr, the more r-agents

can influence the the voting process in favor of the organizational equilibrium

that they prefer, namely closed-source production. Notice that in this model

such a power does not depend on their greater ability to coordinate on a common

and advantageous position. Rather it is a consequence of the fact that, being

small, they experience more “tipping” opportunities.

This inverted-U-shaped behavior of z∗ with respect to the ratio nt/nr is

partially related to the fact that, in this setting, the design of a modular code

architecture assumes the characteristics of a quasi-public good. In order to

have the degree of modularity which is necessary for open-source production to

emerge, in fact, a big initial investment has to be put forward by one part of the

population (i.e. the sub-population of t-agents) with the resulting benefits being

shared by the population as a whole.15 Referring to the literature on the theory

of economic organizations (e.g. Alchian and Demsetz, 1972) this result could

be interpreted as a version of the “1/n problem” where, as long as nr is too

big compared to nt, the marginal cost of modularity is higher than its marginal

benefit, therefore making open source production unsuitable. An interesting

implication of this result is that the persistence of open-source productions is

not affected by the size of n, but rather by the relative size of the two sub-

populations. As a consequence open-source production could still be viable

even when a large population of agents is involved, as long as, a sufficiently big

portion of agents shares in the cost of software design.16

Equation (25) together with the conditions imposed by the (24) can also be

used in order to investigate the relationship between production efficiency and

the stability of the different organizational solutions. The following proposition,

in particular, summarizes the main finding:

Proposition 5. Suppose that open-source production is more efficient than

closed-source production and conflict of interests exists. Assume also nr < nt.

Then, there exist a range of values for the triple (y, z, d) such that closed-source

production (despite being inefficient) is relatively persistent. Moreover, such a

range is greater the bigger is δ.

Proof. From equation (25) it follows that state {0, 0} (i.e. closed-source pro-

15I am grateful to Ugo Pagano who suggested me the idea of modularity as a quasi-public
good.

16This could explain why open-source projects generally succeed only when they manage to
attract a sufficiently high number of software developers. Kollock (1999) refers to the latter
as the minimal contribution condition.

25



duction) is relatively persistent if and only if:

z >
x2 − y2 − ξ(x+ y)d

δ(y + ξd)
= z∗ (26)

Considering equation (26) jointly with the conditions imposed by the (24),

closed-source production can be relatively persistent and inefficient as long as

the following holds:

x2 − y2 − ξ(x+ y)d

δ(y + ξd)
< z < x− y − d (27)

For d = 0, the (27) reduces to

x2 − y2

δy
< z < x− y (28)

where the closed interval defined by the (28) exists if and only if:

nr < nt and
x

δ − 1
≤ y < x (29)

When the (29) holds, the (28) together with the fact that ∂z∗/∂d < 0 suffices

to proof the first part of the proposition. The second part follows from the fact

that ∂z∗/∂δ < 0. �

Figure 5 summarizes the content of Proposition 5. The constraints imposed

by the (24) are reported in the (d, z) plane as dotted lines, under the assumption

that nr < nt and x > y. The downward sloping 45-degree line defines the

portions of the plane for which open-source production as opposed to close-

source production is efficient: any point above the line identifies a combination

of parameters (x, y, z, d) for which closed-source production is efficient, while

any point below the line is a combination for which open-source production is

efficient. The entire curve represents instead z∗, so that for any point above

such curve closed-source production is relatively persistent. As it is easy to see,

so long as z∗ has a vertical intercept which is lower than x− y (condition (28)

above), there exist a whole set of parameter (the shaded area in the graph)

for which closed-source production is at the same time relatively inefficient and

persistent.

The fact that some organizations of production in the software industry ef-

fectively locate in this area of the graph is difficult to say theoretically, and it

turns out to be mainly an empirical question. What Figure 4 shows is the possi-

bility that, under some plausible assumptions, relatively inefficient organizations

of production can persist over time, and are in principle difficult to displace by

26



Figure 5: Production efficiency and persistence. Note: the shaded area reflects
the set of points for which closed-source production is at the same time inefficient
and persistent. The arrows indicate the shift caused by the diffusion of digi-
tal technologies. Starting from an economy mainly populated of closed-source
productions, the reduction in the design cost of modularity brought about the
emergence of an ecology of organizational forms in which open and closed-source
production co-exist.

the sole force of competition. Moreover, Figure 4 can be useful also in trying to

make sense of the deep change brought about by the advent of digital technolo-

gies. Let’s consider for instance points A and B in the graph, which represent a

combination of parameters characterized by given rents (higher in A than in B)

and high design cost of modularity. These points could be interpreted as two

different organizations of production that were engaged in software development

prior to the digital revolution. At that time technology made it very expensive

to design modular platforms, so that a close-source type of production tended

to be at the same time efficient and persistent. The economy, as a consequence,

exhibited a rather homogeneous nature in terms of organizational demography,

with close-source production being the prevailing form (both A and B fall, in

fact, in this category).

After the widespread diffusion of the Internet and the huge fragmentation

of computational capabilities, however, the design cost of modularity dropped

sensibly. At the same time no reform has been introduced on the property rights

domain, so that rents were kept close to their initial level. As a consequence the

organizations of production experienced a horizontal shift in the (d, z) space as

the one depicted in the figure (A → A′ and B → B′). In the cases in which

the rent prior to the drop in d was low, point B in the graph, the organizations

27



most likely experienced a change form closed-source to open-source production

(point B′) which had become, by that time, relatively efficient (e.g. Netscape

Communicator 4.0 turned into Mozilla Firefox). On the contrary, when the

rent before the reduction in d was high, point A, the organization still had an

incentive in maintaining a closed-source type of production (point A′) despite

the fact that, under the new technological environment, it had become relatively

inefficient (e.g. Internet Explorer). As a result, in the economy as a whole, there

has been the emergence of variegated ecology of organizational forms in which

open-source and closed-source productions co-exist, independently of their rel-

ative (in)efficiency.

From these results together with the findings obtained in the previous sec-

tions, two main implications for the study of open and closed-source produc-

tions follow. First, the emergence of different organizations of production in the

software industry can be explained not only by the presence of technological

rigidities (as suggested in Section 3) but also by the fact that different softwares

present different costs advantages (e.g. the presence of a motivated commu-

nities of contributors) and, especially, rent opportunities (due for instance to

its diffusion). Second, the result contained in Proposition 5 raises the question

on whether government intervention should be resorted to in order to increase

efficiency in the economy. In this sense policy interventions could go along two

main lines: first, a reform of the intellectual property rights law aimed at re-

ducing rents from software sales; and second, a deeper involvement of public

institutions (e.g. Universities) in the design of modular technologies with the

objective of reducing the under-supply of modularity which is due to its own

quasi-public good nature.

5 Conclusion

This paper tries to explain the sustained co-existence of open and closed-source

productions in the software industry. Starting from some empirical facts (Facts

1, 2 and 3), it models open and closed-source productions as two distinct organi-

zational equilibria that co-exist thanks to a two-ways causality between property

rights and technology. On this basis the paper makes four main points: first,

the organization of software development is strongly affected by the degree of

technical malleability, i.e. the degree of substitutability between modularity

and labor; second, there exist an institutional complementarity between the

property rights and the technology used in software development; third, in the

presence of high technical malleability the emergence of different organizations

of production in the software industry can be motivated by differences in rent

opportunities and design costs; and finally, there exist a wide range of param-

28



eters for which production inefficiency is persistent. The combination of these

four points may offer an answer to questions Q1, Q2 and Q3 outlined in the

Introduction.

The paper adds to the previous literature on FOSS in three ways. First of

all it considers a causality in the emergence of open-source productions that has

been often neglected by the previous contributions, i.e. the causality that runs

from property rights to technology. Although such an argument is a well known

one in social sciences, no author has previously investigated its applicability to

software development. This paper fills such gap by the mean of a simple model

and obtains as a result a much better sense of the empirical evidence. Secondly,

the paper suggests an analogy between the evolution of organizational forms in

the software industry and speciation. Similarly to the case of natural species, in

fact, open and closed-source productions are presented as entities in which each

part of the whole tends to become optimal given the nature of the other parts.

For this reason, the history of their evolution is likely to be “punctuated” by

sudden complementary changes followed by periods of one-by-one adjustments,

with each organizational form taking distinct and mutually exclusive evolution-

ary trajectories. Such an analytical framework is pretty much consistent with

the simultaneous shocks occurred in the late 80’s as a consequence of the diffu-

sion of the Internet and the development of free-software licenses (e.g. GPL),

and the subsequent emergence and persistence of open and closed-source pro-

ductions. Finally, this paper presents a clear argument in favor of the possi-

bility that, despite of their relative (in)efficiency, both open and closed-source

productions will continue to co-exist. Such an argument, obviously, does not

in any sense undermine the relevance of open-source production as an effective

ways of organizing software development. Rather, it limits the possibility of de-

fending the present viability of closed-source productions by establishing a link

between their protracted existence and a competitive selection process based on

efficiency.

29



A Appendix - Figure 1

Software package Software Type Version 1.0 Present version
Google Chrome Web browser Open (BSD) Open (BSD)
Internet Explorer Web browser Closed Closed
Mozilla Firefox Web browser Closed Open (MPL, GPL, LGPL)
Opera Web browser Closed Closed
Safari Web browser Closed Closed
Microsoft Access Database Closed Closed
ADS Database Closed Closed
Alpha Five Database Closed Closed
Apache Derby Database Closed Open (Apache License
Black Ray Database Open (GNU) Open (GNU)
CA Datacom Database Closed Closed
CSQL Database Open (GNU) Open (GNU)
Cubrid Database Open (GNU/BSD) Open (GNU/BSD)
Dataease Database Closed Closed
Dataphor Database Closed Open (BSD)
Db2 Database Closed Closed
Elevate db Database Closed Closed
Empress Database Closed Closed
Extremedb Database Closed Closed
Filemaker Database Closed Closed
Firebird Database Open (IPL, IDPL) Open (IPL, IDPL)
Gladious Db Database Open (GPL) Open (GPL)
H2(dbms) Database Open (MPL) Open (MPL)
Helix Database Closed Closed
Hsqldb Database Open (BSD) Open (BSD)
Ingres Database Open (GPL) Open (GPL)
Inter System Cache’ Database Closed Closed
Interbase Database Closed Closed
LinterSQL Database Closed Closed
Maxdb Database Closed Open (GPL)
Mckoi Database Open (GPL) Open (GPL)
Mimer SQL Database Closed Closed
MonetDB (MDB) Database Open (MDB License) Open (MDB License)
MySQL Database Open (GPL) Closed
Nonstop SQL Database Closed Closed
Oracle DB Database Closed Closed
Postgree SQL (PSQL) Database Open (PSQL License) Open (PSQL License)
RDM Database Closed Closed
RDM Server Database Closed Closed
Rocket U2 Database Closed Closed
Sas Database Closed Closed
Scimore DB Database Closed Closed
Solid DB Database Closed Closed
SQL Server Database Closed Closed
SQlite Database Open (Public Domain) Open (Public Domain)
Tdbengine Database Closed Closed
Timeten Database Closed Closed

30



Software package Software Type Version 1.0 Present version
Txt SQL Database Open (GPL) Open (GPL)
Vertica DB Database Closed Closed
Visual Fox Pro Database Closed Closed
24Seven Office Finance Closed Closed
Access Finance Closed Closed
Accpac Finance Closed Closed
Accunts Portal Finance Closed Closed
Acumatica Finance Closed Closed
Adempiere Finance Open (GPL) Open (GPL)
AME Finance Closed Closed
Arixcel Finance Closed Closed
Baan Finance Closed Closed
Banana Finance Closed Closed
Cgram Finance Closed Closed
Coa Finance Closed Closed
Compiere Finance Open (GPL) Open (GPL)
CMS Finance Closed Closed
Crucnch Acc. Finance Closed Closed
Cubit Acc. Finance Closed Closed
CYMA Finance Closed Closed
EasyAS Finance Closed Closed
FinanceToGo Finance Closed Closed
FisrtOffice Finance Closed Closed
FlexAcc. Finance Closed Closed
Fortora Fresh Finance Closed Closed
GNU Cash Finance Open (GPL) Open (GPL)
Grisbi Finance Open (GPL) Open (GPL)
HansaWorld Finance Closed Closed
Home Bank Finance Open (GPL) Open (GPL)
iBank Finance Closed Closed
inniAccounts Finance Closed Closed
Intacct Finance Closed Closed
Integrater Office Acc. Finance Closed Closed
IRIS Finance Closed Closed
JFin Finance Open (GPL) Open (GPL)
jGnash Finance Open (GPL) Open (GPL)
KMyMoney Finance Open (GPL) Open (GPL)
Lawson Software Finance Closed Closed
LedgerSMB Finance Open (GPL) Open (GPL)
Mamut Software Finance Closed Closed
Microsoft AX Finance Closed Closed
Microsoft GP Finance Closed Closed
Microsoft NAV Finance Closed Closed
Microsoft SL Finance Closed Closed
Microsoft Money Finance Closed Closed
Microsoft Off. Acc. Finance Closed Closed
Mifos Finance Open (Apache License) Open (Apache License)
Mint.com Finance Closed Closed
Moneydance Finance Closed Closed

31



Software package Software Type Version 1.0 Present version
MyOB Finance Closed Closed
NetSuite Finance Closed Closed
NolaPro Finance Closed Closed
NOSA XP Finance Closed Closed
Open Bravo Finance Open (MPL) Open (MPL)
OpenERP Finance Open (GPL) Open (GPL)
Open System Acc. Finance Closed Closed
Openda QX Finance Closed Closed
Oracle E-Business Suite Finance Closed Closed
Peachtree Finance Closed Closed
Pegasus Finance Closed Closed
POS Solutions Finance Closed Closed
PostBooks Finance Closed Open (CPAL)
QuantLib Finance Open (BSD) Open (BSD)
Quasar Acc. Finance Closed Closed
QuickBooks Finance Closed Closed
Quicken Finance Closed Closed
Red Wing Software Finance Closed Closed
Sage Finance Closed Closed
Sage Line 50 Finance Closed Closed
Sage Pastel Evolution Finance Closed Closed
Sage PFW ERP Finance Closed Closed
SAP Business One Finance Closed Closed
SAP ERP Finance Closed Closed
Simply Acc. Finance Closed Closed
SQL-ledger Finance Open (GPL) Open (GPL)
Tally Finance Closed Closed
Traverse Finance Closed Closed
Trton Finance Open (GPL) Open (GPL)
Turbo Cash Finance Open (GPL) Open (GPL)
Ubikwiti Finance Closed Closed
Xero Finance Closed Closed
YNAB Finance Closed Closed
Ability Off. Office Suite Closed Closed
Cellframe Off. Office Suite Closed Closed
Easy Off. Office Suite Closed Closed
EI Off. Office Suite Closed Closed
Ichitaro Office Suite Closed Closed
Wordperfect Off. Office Suite Closed Closed
Neo Off. Office Suite Open (GPL) Open (GPL)
iWork Office Suite Closed Closed
Mariner Writer Office Suite Closed Closed
Auis Office Suite Open (GPL) Open (GPL)
feng Off. Office Suite Closed Closed
Contact Off. Office Suite Closed Closed
Share Off. Office Suite Closed Closed
Think Free Off. Office Suite Closed Closed
Zoho Off. Office Suite Closed Closed
Acrobat Office Suite Closed Closed

32



Software package Software Type Version 1.0 Present version
Microsoft Off. Office Suite Closed Closed
Open Off. Office Suite Closed Open (LGPL)
Lotus Symphony Office Suite Closed Closed
Go-oo Office Suite Open (LGPL) Open (LGPL)
Koffice Office Suite Open (GPL, BSD) Open (GPL, BSD)
Gnome Off. Office Suite Open (LGPL) Open (LGPL)
Siag Off. Office Suite Open (LGPL) Open (LGPL)
Kingsoft Off. Office Suite Closed Closed
Softmaker Off. Office Suite Closed Closed
Star Off. Office Suite Closed Closed
Free BSD Operative System Open (BSD) Open (BSD)
iPhone OS Operative System Closed Closed
Linux OS Open (GPL) Open (GPL)
Mac OS X Operative System Closed Closed
Open VMS Operative System Closed Closed
Symbian Operative System Closed Open (EPL)
Microsoft Windows Operative System Closed Closed
Apache Web server Open (Apache License) Open (Apache License)
Microsoft Windows Serv. Web server Closed Closed

33



References

Armen A. Alchian and Harold Demsetz. Production, information costs, and
economic organization. The American Economic Review, 62(5):777–795, 1972.

Masahiko Aoki. Toward a Comparative Institutional Analysis. MIT Press, Cam-
bridge, 2001.

Carliss Y. Baldwin and Kim B. Clark. The architecture of participation: Does
code architecture mitigate free riding in the open source development model?
Management Science, 52:1116–1127, 2006.

Carliss Y. Baldwin and Eric von Hippel. Modeling a paradigm shift: From
producer innovation to user and open collaborative innovation. MIT Sloan
Research Paper No. 4764-09, 2009.

Yochai Benkler. Coase’s penguin, or linux and the nature of the firm. The Yale
Law Journal, 112(3):369–446, 2002.

Yochai Benkler. “sharing nicely”: On shareable goods and the emergence of
sharing as a modality of economic production. Yale Law Journal, 114:273–
358, 2004.

Yochai Benkler. The Wealth of Networks: How Social Production Transforms
Markets and Freedom. 2006.

James Bessen. Open source software: Free provision of complex public goods.
In Jürgen Bitzer and Philipp J.H. Schröder, editors, The Economics of Open
Source Software Development. Elsevier B.V., Amsterdam, 2006.

Samuel Bowles. The production process in a competitive economy: Walrasian,
neo-hobbesian, and marxian. The American Economic Review, 75(1):16–36,
1985.

Samuel Bowles. Microeconomics: Behavior, Institutions, and Evolutions.
Princeton University Press, Princeton, 2006.

Samuel Bowles and Herbert Gintis. The power of capitalism: On the inadequacy
of the conception of the capitalistic firm as private. Philosophical Forum, 14:
225–245, 1983.

Samuel Bowles and Herbert Gintis. A political and economic case for the demo-
cratic enterprise. Economics and Philosophy, 9:75–100, 1993.

Ronald H. Coase. The nature of the firm. Economica, 4:386–405, 1937.

Ben Craig and John Pencavel. The behavior of worker cooperatives: The ply-
wood companies of the pacific northwest. The American Economic Review,
82(5):1083–1105, 1992.

Harold Demsetz. Toward a theory of property rights. The American Economic
Review, 57(2):347–59, 1966.

Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia. The allocation of
collaborative efforts in opnes-source software. Infromation Economics and
Policy, 20:316–322, 2008.

34



Gregory K. Dow. Why capital hires labor: A barganining perspective. The
American Economic Review, 83(1):118–134, 1993.

Gregory K. Dow and Louis Putterman. Why capital suppliers (usually) hire
workers: What we know and what we need to know. Journal of Economic
Behavior and Organization, 43:319–336, 2000.

Niles Eldredge and Stephen Jay Gould. Punctuated equilibria: An alternative to
phyletic gradualism. In Thomas J. M. Schopf, editor, Models in Paleobiology,
pages 82–115. Freeman, Cooper and Company, San Francisco, 1972.

Herbert Gintis. Financial markets and the political structure of the enterprise.
Journal of Economic Behavior and Organization, 11(3):311–322, 1989.

Herbert Gintis. Game Theory Evolving: A Problem Centered Introduction to
Modeling Strategic Interaction. Princeton University Press, Princeton, 2nd
edition, 2009.

Paola Giuri, Francesco Rullani, and Salvatore Torrisi. Explaining leadership in
virtual teams: The case of open source software. Information Economics and
Policy, 20:305–315, 2008.

Sanford J. Grossman and Oliver D. Hart. The costs and benefits of ownership:
A theory of vertical and lateral integration. The Journal of Political Economy,
94(4):691–719, 1986.

Lu Hong and Scott E. Page. Groups of diverse problem solvers can outper-
form groups of high-ability solvers. Proceedings of the National Academy of
Sciences, 101(48):16385–89, 2004.

Michael C. Jensen and William H. Meckling. Theory of the firm: Managerial
behavior, agency costs and ownership structure. Journal of Financial Eco-
nomics, 3(4):305–360, 1976.

Justin Pappas Johnson. Collaboration, peer review and open source software.
Information Economics and Policy, 18(4):477–497, 2006.

Peter Kollock. The economies of online cooperation: Gifts and public goods in
cyberspace. In Marc A. Smith and Peter Kollock, editors, Communities in
Cyberspace. Routledge, New York, 1999.

Richard E. Langlois and Giampaolo Garzarelli. Of hackers and hairdressers:
Modularity and the organizational economics of open-source collaboration.
Industry and Innovation, 15(2):125–143, 2008.

Josh Lerner and Jean Tirole. Some simple economics of open source. The
Journal of Industrial Economics, 50(2):197–234, 2002.

Josh Lerner and Jean Tirole. The economics of technology sharing: Open source
and beyond. The Journal of Economic Perspectives, 19(2):99–120, 2005.

Stephen A. Marglin. What do bosses do? the origins and functions of hierarchy
in capitalist production. Review of Radical Political Economy, 6:60–112, 1974.

35



David McGowan. Legal implications of open-source software. University of
Illinois Legal Review, 2001(1):241–304, 2001.

Paul Milgrom and John Roberts. Rationalizability, lerning and equilibrium
in games with strategic complementarities. Econometrica, 58(6):1255–1277,
1990.

Suresh Naidu, Sung-Ha Hwang, and Samuel Bowles. Evolutionary bargaining
with intentional idyosincratic play. Economic Letters, forthcoming, 2010.

Ugo Pagano. Organizational equilibria and institutional stability. In Samuel
Bowles, Herbert Gintis, and B. Gustafsson, editors, Markets and Democracy:
Participation, Accountability and Efficiiency. Cambridge University Press,
Cambridge, 1993.

Ugo Pagano and Robert Rowthorn. The competitive selection of democratic
firms in a world of self-sustaining institutions. In Ugo Pagano and Robert
Rowthorn, editors, Democracy and Efficiency in the Economic Enterprise.
Routledge, London, 1994a.

Ugo Pagano and Robert Rowthorn. Ownership, technology and institutional
stability. Structural Change and Economic Dynamics, 5(2):221–242, 1994b.

Louis Putterman. Some behavioral perspective on the dominance of hierarchi-
cal over democratic forms of enterprise. Journal of Economic Behavior and
Organization, 3(2-3):139–160, 1982.

Eric Steven Raymond. The Cathedral and the Bazaar. O’Reilly and Associates,
Inc., Sebastopol, 1999.

Maria Alessandra Rossi. Decoding the free/open source software puzzle: A
survey of theoretical and empirical contributions. In Jürgen Bitzer and
Philipp J.H. Schröder, editors, The Economics of Open Source Software De-
velopment. Elsevier B.V., Amsterdam, 2006.

Robert Rowthorn. Neo-classicism, neo-ricardianism and marxism. New Left
Review, 86:63–82, 1974.

Paul Samuelson. Wage and interest: A modern dissection of marxian economic
models. The American Economic Review, 47(6):884–912, 1957.

Herbert A. Simon. The architecture of complexity. Proceedings of the American
Philosphical Society, 106:467–482, 1962.

Oliver E. Williamson. The Economic Institutions of Capitalism. The Free Press,
New York, 1985.

36


