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Introduction  

 

Breakthrough or radical inventions have shown to be an important source of 

technological advancement, wealth creation and economic growth.  They are sources of creative 

destruction that bring about paradigm shifts, new technological trajectories, and require different 

competencies.  They are at the core of wealth creation as evidenced by the empirical finding that 

the top 10% of patents collect 48 to 93% of financial payoffs (Scherer & Harhoff, 2000).  The 

economic impact of breakthroughs is at the crux of research aimed to establish sources of radical 

inventions. At the organizational level, starting with Schumpeter’s self-conflicting arguments 

with regard to the optimal organizational structure, scholars have long debated whether entrants 

(Schumpeter, 1942) or incumbents (Ahuja & Lampert, 2001) are more likely sources of 

breakthrough inventions.  At more micro level of analyses, scholars have studied whether lone 

individuals versus teams are most at risk of inventing breakthroughs (Singh & Fleming, 2010). 

The present paper contributes to this line of research by investigating two research 

questions: where scientific breakthroughs arise from within a community and what 

characteristics make a particular scientist more likely to discover a breakthrough.  Three major 

aspects differentiate this project from previous papers in the literature: first, it focuses on 

scientific breakthroughs as opposed to technological breakthroughs; second, it shifts from the 

organizational unit of analysis to the individual; third, it brings data to a question which has 

previously focused on the publication or patent as the unit of analysis, or remained mainly 

theoretical; and fourth, it attempts to use data in the years prior to breakthrough to predict the 

breakthrough.  

The focus on scientific breakthroughs reflects the increasing role science plays in 

spurring technological advancement and economic growth. Indeed, several empirical studies 
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have confirmed the link between science and economic growth where cumulative published 

research accelerates growth (Adams, 1990), as well as the link between science and 

technological innovation where increased university research spending is associated with greater 

rates of local patenting (Jaffe & Trajtenberg, 1996).  Research merging these ideas has 

demonstrated that science serves as a guide in the search for technological progress; it leads 

inventors more directly to promising combinations thus revealing a precise mechanism through 

which science accelerates the rate of technological innovation (Fleming & Sorenson, 2004).  

Given science’s crucial role in advancing economic growth, understanding the process of 

scientific knowledge creation is vital especially from both a managerial and policy standpoint.  

This research will aid science-based firms in producing more at risk breakthrough research, and 

generally help firms and their managers identify commercializable opportunities.  From a policy 

standpoint, this project identifies scientists at risk of breakthrough, which is a first step in 

eventually moving up levels of analysis to locating communities of scientists more likely to 

discover breakthroughs and, thus, enabling more targeted governmental subsidies and private 

investments into them.  Furthermore, aside from the purely economic motivations for studying 

breakthroughs, they are also sources of social benefit that enhance social welfare (Trajtenberg, 

1990).   

The current paper enables us to gather empirical evidence quantitatively by exploring our 

research questions through econometric analysis of a large dataset – the disambiguated Pubmed 

Author-ity database (Torvik & Smalheiser, 2009). Furthermore, we plot network maps as an 

excellent tool to graphically and structurally visualize collaborative networks prior to the 

emergence of breakthrough.  
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We employ two outcome variables that measure productivity and impact of academic 

publications. They consist, respectively, of the number of publications during the breakthrough 

year for scientists within a community, as well as the number of forward citations these 

publications have garnered until today.  We focus on several covariates of interest that have 

deeply rooted and varied theoretical foundations but very little consensus: whether 

breakthroughs arise at the core or periphery of the community, whether they come from 

scientists early or later in their careers, whether they are invented by specialists versus 

generalists and whether they arise from a brokerage versus a cohesive network position.  

 

The Emergence of a Scientific Breakthrough 

Scientific Breakthroughs 

Breakthroughs can be depicted by various measures but its definition is ultimately linked 

to the notion of impact (Simonton, 1999).  Breakthroughs encompass both creative novelty and 

success.  As opposed to some inventions which become technological dead ends, breakthroughs 

are the foundational inventions at the basis of further incremental enhancements.  In the language 

of the punctuated equilibrium theory, breakthroughs are the rare events that bring about 

discontinuities in technological trajectories, forms new technological paradigms in which their 

utility on the path of technological progress has been demonstrated (Dosi, 1982) and are usually 

associated with increased environmental turbulence (Tushman & Anderson, 1986).  

The definition of scientific breakthrough can be constructed from the definitions of 

science and breakthrough.  To define science, let us first draw a clear distinction between science 

and technology, which have been defined following two main streams.  One stream, classified 

under the new economics of science, takes an institutional stance (Dasgupta & David, 1994; 
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Merton, 1957) while the other interpretation gets to the role that science and technology play 

respectively in generating new knowledge.  Under the institutional view, science is seen as a 

distinctive incentive system from technology.  Science although much more complex (Latour, 

1987; Latour & Woolgar, 1986) than depicted herein is characterized by publication, supported 

by a priority-based reward system and exists predominantly, but not exclusively, in research 

universities.  In contrast, technology is a world in which ideas are produced for economic ends 

and encoded in patents and other modes of protection to facilitate appropriation and 

commercialization (Dasgupta & David, 1994).  The relationship between science and technology 

can also be depicted by the nature of knowledge creation.  Science concentrates on 

demonstrating the why through a process of posing hypotheses that are empirically tested so as to 

refine theory; while technology searches for recipes for how by developing practical and useful 

techniques.  In the definition of scientific breakthrough adopted herein, science is a process 

undertaken to understand why in a certain natural phenomenon occurs.   

Following Tushman and Anderson (1986) we define scientific breakthroughs in this 

paper as advances that disturb the previous understandings of why of a particular phenomenon in 

a fundamental manner, give rise to novel potentially dominance upsetting technology, and have 

widespread technological application potential and commercialization potential.   

The literature is rife with historical case studies of both scientific and technological 

breakthroughs.  For almost every major invention, there are countless accounts written by the 

discoverers themselves or historians of science and technology.  These accounts offer various, 

sometimes strongly opposing, viewpoints on the process of discovery and the interactions 

between winners and serious contenders.  For instance, the discovery of DNA has been described 

at length by James Watson  the winning scientist (Watson, 1963), but several other accounts are 
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also available notably that told from Rosalind Franklin’s – another scientist in the race to 

determine the structure of DNA – perspective (Maddox, 2002).  

These historical case studies of breakthroughs are in-depth qualitative ex post exposés of 

the history of each scientific breakthrough. Although extremely rich and incredibly insightful 

when characterizing the invention or discovery process, the number of stakeholders included in 

such historical accounts is usually limited to those in the immediate proximity of the winners, 

such as their mentors, collaborators and eminent fellow scientists racing for the same discovery.  

Consequently, these individual case studies or historical accounts lack the macro collaborative 

view enabled by large archival quantitative methods, and very few works have attempted to 

synthesize the individual findings from each.  We address this gap in the literature by taking a 

more global view of scientists within a community using quantitative econometric analysis.  

 

Emergence of Scientific Breakthroughs 

The literature on identifying sources of breakthroughs has focused on three levels of 

analysis – the organizational level, the individual level and the invention level.  At the 

organizational level, works have either concentrated on identifying organizational sources of 

breakthrough, in other words, revealing the types of firms more likely to invent technological 

breakthroughs (Fleming, 2002), or focused and contrasted the likelihood of  technological 

breakthrough creation by entrants versus incumbents (Ahuja & Lampert, 2001) as well as their 

subsequent impact (Trajtenberg, 1990).  These studies cite the firm’s involvement in high-

variance trials and merging diverse technologies as organizational sources that enhance the 

likelihood of breakthrough success (Fleming, 2001), and identify a curvilinear relationship 
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between a firm’s exploration in novel, emerging and pioneering technologies and breakthrough 

creation (Ahuja & Lampert, 2001). 

Works focusing on knowledge creation at the invention or innovation level of analysis 

has emphasized the process of recombinant search.  Assuming bounded rationality inventors tend 

to search locally for an optimal recombination of existing components to create knowledge.  For 

instance, at the heart of Henderson and Clark’s (1990) architectural innovation is the notion that 

new innovations are created by merely rearranging the way in which the components of a 

product is linked leaving untouched the core design concepts of each initial component.  Even 

though inventors tend to search locally, uncertainty still predominates the recombination process 

and the sources of this uncertainty is derived from the search for unfamiliar new components and 

new combinations (Fleming, 2001).  At the individual level, studies have explored how direct 

relationships between inventors or scientists and their network structure impact knowledge 

creation.  The findings point to diminishing returns to both the number of relationships as well as 

the frequency of relationships to knowledge creation (McFadyen & Cannella, 2004).  These 

studies focus on either the process of knowledge creation through recombination or identify 

social capital characteristics that foster knowledge productivity, but they do not elaborate on 

where the knowledge comes from within a community of inventors or scientists – and if the 

sources of that future knowledge can be predicted.  This gap in literature thus constitutes the first 

point of departure for our current paper.  

The inquiry of where a scientific breakthrough occurs within a community of scientists 

gets to the issue of knowledge creation and novelty.  Previous research in the area of knowledge 

creation in both science and technology at the individual researcher or inventor unit of analysis 

has used similar research designs in that they employed network analysis of large archival 
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datasets to econometrically infer relationships.  In the scientific realm, the influence of 

collaborative networks on scientific productivity has been explored at the individual scientist 

level where a curvilinear relationship was established between social capital and knowledge 

creation (McFadyen & Cannella, 2004).  Similar effects were also found using strength of 

relations as the explanatory variable.  Cultivating relationships increases the amount of 

information and resources received from others, but maintaining an over abundant number of 

relationships soon becomes costly and outweighs its advantage due to increased startup cost and 

opportunity cost of time spent maintaining them (Zucker, Darby, Brewer, & Peng, 1996).  With 

increased frequency of interactions, exchanges become more efficient but may give rise to 

convergence of understanding and ideas (Coleman, 1988), particularly if such interactions are 

with the same people.  In a follow-up paper exploring the determinants of knowledge creation in 

science, two network measures – average tie strength and ego network density – and their 

interactions are studied (McFadyen, Semadeni, & Cannella, 2009).  Using the same research 

setting as previously described, the authors find that a sparse network with low degrees of 

connectivity providing more opportunities for new information exchange and diverse 

perspectives coupled with strong ties that facilitates the transfer of tacit knowledge grants the 

best condition for knowledge creation.   

Even though not set in the scientific realm, results from several works that studied the 

effect of various network measures on knowledge creation can be readily extrapolated and 

applied onto scientific knowledge creation. Within technology, works on the creation of 

knowledge focuses on determining factors influencing innovation productivity.  Analysis at the 

firm level have studied the effect of network measures – such as collaborative networks (more 

specifically direct and indirect ties) and structural holes (Ahuja, 2000), as well as regional 
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agglomeration and network centrality (Whittington, Owen-Smith, & Powell, 2009)  – on 

organizational innovation output.  Furthermore, the effects of brokerage (Burt, 2004) and 

cohesion (Obstfeld, 2005; Uzzi, 1997) on knowledge creation have been studied with conflicting 

results as proponents of both collaborative structure camps have argued for its positive effect on 

knowledge productivity.  Fleming, Mingo and Chen (2007) reconcile the conflict by adding 

another dimension – personal attributes of collaborators – which was ignored in previous works.   

All above results are critical in understanding the factors influencing novel knowledge 

creation but they do not address the questions of where a breakthrough comes from and who 

makes the actual discovery; in other words, whether they come from scientists early or later in 

their careers, whether they are invented by specialists versus generalists and whether they arise 

from a brokerage versus a cohesive network position.  The following sections of this paper 

address these questions using quantitative using network visualization tools and regression 

models set in a case study of the RNA interference breakthrough.  

 

The Case of RNA Interference as a Scientific Breakthrough 

RNA interference is a good candidate of such a scientific breakthrough described above 

because of its research and therapeutic potential.  The phenomenon was initially observed by 

plant biologists in the early 1990s where an attempt to transgenically alter color pigmentation in 

petunia plants yielded unexpected outcomes.  According to existing knowledge at the time, 

researchers were expecting darker purple flowers due to overexpressed genes from artificially 

introducing chalcone synthase, a flower pigmentation enzyme (Napoli, Lemieux, & Jorgensen, 

1990).  Instead, petunia flowers became less pigmented than their natural form, producing fully 

or partially white flowers which indicated to scientists that as opposed to the intended gene 
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overexpression, the activity of chalcone synthase had significantly decreased.  This phenomenon 

was also found by scientists studying fungi (Romano & Macino, 1992) and was named quelling, 

although it was not immediately recognized as related to the phenomenon of co-suppression of 

gene expression found in petunia plants.  Despite several early observations of the phenomenon, 

the underlying molecular mechanism remained unknown.  One reason behind the difficulty of 

explaining the observed phenomenon and identifying the causal agent was the disparity in causal 

pathways between the RNAi mechanism and the central dogma of molecular biology.  The 

central dogma of molecular biology is a framework that characterizes the main process of 

sequential genetic information flow and dictates gene expression in which information contained 

in double-stranded DNA is transcribed into a newly formed single stranded messenger RNA 

(mRNA) and subsequently translated into proteins or enzymes.  Thus, in the central dogma 

theory, both double-stranded DNA and single stranded RNA had salient roles for long and short 

term information storage respectively, while no place was left for double-stranded RNA 

(dsRNA) (Fire, 2007).  However, it turns out that double-stranded RNA is indeed the trigger 

agent in RNAi and was first identified by Fire and Mello in C. elegan worms (Fire et al., 1998).  

Fire and Mello subsequently coined the term RNA interference to characterize the phenomenon 

and were awarded the Nobel Prize in Physiology and Medicine in 2006 for this notable 

discovery.  

In short, RNA interference is a naturally occurring endogenous mechanism triggered by 

dsRNA precursors which are processed into small interfering RNAs (siRNA) or microRNAs 

(miRNA) that bind to specific other RNAs and either increase or decrease their activity, for 

example by preventing a messenger RNA from producing a protein which ultimately induces the 

silencing of specific genes (Meister & Tuschl, 2004).  RNA interference is valuable as a research 
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tool as well as in biotechnology drug development.  For instance, in research, the selective and 

robust effect of RNAi on gene expression as synthetic dsRNA introduced into cells can induce 

suppression of specific genes of interest both in vitro and in vivo.  It can also be applied to large-

scale screenings that systematically shut down each gene in the cell, which can help identify 

components necessary for a particular cellular process or event.  Thus exploitation of the RNA 

interference pathway is a promising tool in biotechnology and medicine where we can 

conceivably use this mechanism to treat genetic diseases by turning off Huntington’s disease or 

certain liver cancers for example.  Applying the definition of scientific breakthrough as discussed 

earlier, RNAi constitutes such a breakthrough because it disrupts the previous understanding of 

why of the central dogma in molecular biology through the introduction of a novel RNA 

interference pathway, gives rise to a new technology in silencing genes, and has widespread 

technological application and commercialization potential as described above.  Furthermore, the 

naming of siRNA, a class of dsRNA involved in the RNAi pathway, as breakthrough of the year 

in 2002 by Science (Couzin, Enserink, & Service, 2002) supports our decision to research RNA 

interference as a scientific breakthrough case study. 

 

Identifying a scientific community 

We must first define a scientific community before answering who in that community is 

most likely to discover a breakthrough.  How a community is defined is crucial to understanding 

how scientific breakthroughs arise within that community.  Communities have been studied for a 

long time from a network analysis viewpoint by researchers spanning the social sciences 

(sociologists), natural sciences (physicists), and applied sciences (computer scientists and applied 

mathematicians).  Sociologists have focused mainly on describing characteristics of social 
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communities – various group organizations formed in society such as families, professional and 

friendship circles – through social network analysis; whereas applied physicists and computer 

scientists have more converged towards developing computationally efficient community 

detection algorithms based on notions of node similarity and partitioning.  Communities are, 

thus, defined as groups of vertices which share some common properties and/or play similar 

roles within the network graph (Fortunato, 2010).  Furthermore the distribution of edges is 

locally and globally inhomogeneous, with high concentrations of edges within special groups of 

vertices, and low concentrations between these groups (Girvan & Newman, 2002).   

The literature on community detection in physics and applied mathematics is young but 

plentiful.  The topic of community detection gained significant traction since 2002 after Michelle 

Girvan and Mark Newman (2002) brought graph-partitioning problems to the attention of the 

broader fields of statistical physics and applied mathematics.  Community detection has striking 

similarities with certain physics models and mathematical algorithms which explains its 

increasing popularity as a research interest in these fields.  Numerous community detection 

methods have been developed in the past eight years by these physicists and mathematicians, 

with applications not only in sociology with the structural detection of social communities, but 

also in the natural sciences such as biological networks (Fortunato, 2010; Girvan & Newman, 

2002; Porter, Onnela, & Mucha, 2009). Needless to say some community detection methods are 

more appropriate for social community detection than others; we will therefore focus on these 

methods and omit those, such as spectral partitioning, which require knowing the size of 

communities in advance that are only suitable for non-sociology applications in this present 

literature review. In fact, the main difficulty in community detection is that its ideal formulation 

is usually domain-specific.  
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Before getting into details on each community detection method one must first define a 

social community. Most social community detection methods are based on the definition that 

stemmed from Granovetter’s (1973) empirical finding where links within communities tend to be 

strong while relationships between communities are more likely to be weak. Therefore, 

structurally, a community is a group of nodes densely connected to each other but sparsely 

connected to other dense groups in the network. Even though the existence of social 

communities is intuitively clear and has been studied by sociologists such as Coleman (1964), 

Freeman (2004) and Moody and White (2003), a rigorous definition of community structure is 

still fuzzy. Despite this lack of definitional rigor, community detection can be decomposed into 

complex interactions of two salient components, modules and hierarchies (Porter et al., 2009). 

Modules are single clusters of nodes, while repeatedly partitioning modules further into smaller 

more refined modules constitutes the process of hierarchical partitioning. Thus modules can be 

nested hierarchically, or there can simply be a collection of them.  

Methods aimed at identifying communities can be divided into several main categories 

that include, non-exhaustively, clustering techniques such agglomerative and divisive methods, 

centrality-based techniques, local methods such as k-clique percolation, and modularity-based 

techniques. Traditional clustering techniques are intuitively appealing such as the agglomerative 

method that starts at a single node and attempts to connect similar clusters at each recomputation, 

or the divisive method which starts with a full graph and breaks it down into various 

communities. Centrality-based community detection is an example of such a divisive method in 

which edges are ranked based on betweeness centrality (Wasserman & Faust, 1994) and 

communities are formed by removing the edge with the largest value, i.e. the edge that lies on a 

large number of short paths between nodes or that has highest traffic. However, these clustering 
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methods do not allow for overlap in communities (nodes simultaneously belonging to several 

groups), a widespread characteristic among social communities. The k-clique (Kolaczyk, 2009) 

percolation method addresses this problem and enables overlapped community detection. A 

community is formed as the union of k-clique subgraphs. K-cliques represent the most-connected 

modules in a network representation and therefore using k-clique may cause one to overlook 

other dense modules that are not necessarily as well connected (Palla, Derenyi, Farkas, & 

Vicsek, 2005). Modularity optimization uses the modularity quality function to quantify 

communities. The quality function compares the number of intracommunity edges to those 

expected had it been generated randomly. Essentially the quality function is a measure of how 

well given network partitions classifies its communities.  One constraint in the original 

formulation of modularity-based techniques is the resolution limit. Hence communities smaller 

than a certain threshold are undetectable as they tend to be merged with larger communities 

(Fortunato & Barthelemy, 2007). To address this issue researchers have opted to explicitly define 

a resolution parameter so as to control coarseness in the communities detected (Reichardt & 

Bornholdt, 2006).  

Earlier techniques of detection of communities has mainly concentrated on identifying 

existing mature communities, other than for some notable exceptions (Hopcroft, Khan, Kulis, & 

Selman, 2004), and paid less attention on dynamically tracking how communities evolve from 

birth to growth to, finally, death.  Recent papers have introduced methods with the capability to 

not only dynamically identify community structure across time frames but also networks that 

exhibit multiplicity or multiple types of links (univariate or bivariate) and have multiple scales 

(resolutions) (Mucha, Richardson, Macon, Porter, & Onnela, 2010).  The authors combine 
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quality function and resolution parameter techniques as discussed above to achieve community 

detection across time-dependent, multiscale and multiplex networks. 

A new branch of literature, that departs from this traditional structural community formed 

by detecting cohesive nodes described above, focus on groups of links instead (Ahn, Bagrow, & 

Lehmann, 2010). This novel and unorthodox method of identifying communities is able to 

incorporate overlapping nodes while revealing organizational hierarchy.  It successfully 

reconciles the conflicting notions of overlap and hierarchy, but still suffers from the main 

limitation associated with structurally detected communities as discussed below.     

Despite a fairly advanced literature on community detection, spearheaded by network 

physicists and applied mathematicians, as evidenced by the number of extensive reviews 

available in the literature (Fortunato, 2010; Porter et al., 2009), several unique and defining 

characteristics of our data and study still make it difficult to detect communities in a straight-

forward fashion and, consequently, expose the limitations of currently available methods.  

Indeed, one important limitation of these structurally detected communities, which follows from 

the starting definition of a community consisting of cohesive group of nodes or links, is that all 

members of a given community must be connected to one another. “Sub” communities can be 

identified within a larger connected component, however, the analysis begins with – and assumes 

– a connected component.  Thus, these methods of community detection preclude communities 

that share similar functional attributes yet have some unconnected members. For instance, in the 

case of our RNAi scientists, given our network depiction of scientific collaboration in which 

nodes are individual scientists and edges are co-authorship relationships, even though scientists 

A and B do not necessarily have a collaborative relationship reflected through co-authored 

publishing both work in advancing the scientific understanding of RNAi. Consequently, we 
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envision our community of RNAi focused scientists to be depicted as a collaboration network 

with several unconnected components. At this point, unfortunately, most theoretical research into 

community detection techniques have solely focused on structurally identifying communities, 

promptly ignoring nodal characteristics that define functional communities.  

One potential way to incorporate both functional and structural characteristics in our 

definition of RNAi community is to employ a multiplex method in the jargon of network 

community scientist scholars. In the functional plane, because our study is centered on the period 

prior to breakthrough in 1998 and a set community of RNAi researchers has yet to emerge, we 

made use of MeSH (Medical Subject Headings) keywords to search for papers publishing in a 

specific area rather than a keyword search of academic publications titles and abstracts.  MeSH 

keywords are believed to be a relatively objective classification scheme; instead of being 

assigned by authors themselves, MeSH is a comprehensive controlled vocabulary for the purpose 

of indexing journal articles and books in the life sciences which can also serve as a thesaurus that 

facilitates searching.  It is created and updated by the United States National Library of 

Medicine (NLM) and used by the MEDLINE/PubMed article database and by NLM's catalog of 

book holdings.  Consequently, we define our community of researchers at risk of discovering a 

breakthrough in the period prior to 1998 from their published peer-reviewed articles using the 

MeSH search terms
1
 “RNA, Double-Stranded”, “RNA, Antisense” and “Gene Expression 

Regulation” in PubMed.  These three MeSH terms were identified following a review of articles 

on the history of RNA interference as well as Nobel Prize lectures.  Scientists were attempting to 

explain gene expression regulation by experimenting with both double-stranded RNA and 

antisense RNA as causal agents.  It is interesting to note that for that time period, “RNA, 

                                                 
1
 The exact search string used in PubMed query extracted on March 7, 2010: ("RNA, Double-Stranded"[Mesh] OR 

"RNA, Antisense"[Mesh]) AND "Gene Expression Regulation"[Mesh] AND eng[lang] AND 1978:1998[dp].  
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Interference” did not exist yet as a MeSH term. It was only until 2002 that it became part of the 

MeSH term lexicon.
2
 In this way, we have effectively identified a community of scientists 

focused in RNAi research topically based on their research publication focus. Using this sample 

of patents, we then construct a collaborative network of RNAi scientists with individual 

scientists depicted as nodes and their co-authorship relationships representing edges linking each 

node. This network community, therefore, boasts a multiple-component structure instead of 

being all interlinked in a single large one and consists of scientists interested in similar topics. 

Furthermore as the analysis focuses on the breakthrough, the baseline year is 1998 – the 

year that Fire and Mello published their RNAi mechanism discovery in Nature.  We segment the 

case of RNAi for visualization to the period pre-breakthrough (1978-1998), where Figure 1 

illustrates the overlayed network of scientists and inventors for the RNAi community and all 

their co-authors up to 1997, the year prior to breakthrough discovery.  Data for the network 

diagrams, plotted using the iGraph package in Python 2.6, is obtained by aggregating patent (Lai, 

D'Amour, & Fleming, 2009) and paper (Torvik & Smalheiser, 2009) database searches, and 

disambiguating each author.  Red nodes illustrate scientists who only publish papers, blue nodes 

indicate scientists that also publish patents while green nodes are those that only publish patents, 

and edges represent co-authorship relationships.  Node size shows the productivity as measured 

by the number of publications, either papers or patents, each researcher has.  It is interesting to 

note that the RNAi breakthrough by Fire and Mello did not come from the largest component, 

but rather arose from the periphery of the network at the 26
th

 largest component.  Due to the 

minimal number of patents in the pre-breakthrough period in which our present paper focuses on, 

we will solely employ the MedLine scientific paper database in our subsequent quantitative 

analyses.   

                                                 
2
 Please see the appendix for a detailed description of our approach. 
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[Insert Figure 1 about here] 

 

Quantitative Modeling  

Data and Methods   

Having structurally visualized the evolution of collaborative networks after the 

emergence of a breakthrough in the previous section, this part of the paper explores 

quantitatively how the breakthrough occurred from within our defined community of scientists.  

The analysis is undertaken at the individual level because innovators are a critical input and at 

the very heart of the process of innovation in both science and technology.  Given the scientists’ 

previous personal attributes prior to 1998, we would like to observe who will have a fruitful year 

in 1998 thereby identifying individual characteristics that make them most likely to discover a 

breakthrough.  These personal attributes include factors that characterize their past and present 

experiences as well as features of their environment, such as the age of scientists, publication 

history, social structure, organizational affiliation at the time of breakthrough, as well as past 

affiliations.   

We restrict the dataset used in the empirical analysis to the PubMed Author-ity database 

(Torvik & Smalheiser, 2009) due to the scientific nature of the breakthrough, and organize each 

data point as unique author records in which information such as the number of citations, the 

number of papers, the prior career, and the affiliation for each author can be tabulated.  Scientists 

defining the RNAi community pre-breakthrough is obtained using the same sample of papers 

from the MeSH keyword search performed in the visualization section, which yielded 789 

publications and 2,546 authors.  We drop from the analysis data, records without any authors, 

records with missing data as well as those whose career ended before 1998, which leaves us with 
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1,886 author records. Moreover, as our quantitative analysis focuses on observing publication 

performance in 1998, the explanatory variables include publication data from our sample of 

scientists up to and including 1997, while publication data in 1998 are used as our outcome 

variables.   

 

Regression Models 

Two descriptive regression model groups that mirror the nature of our dependent 

variables are used in the analysis.  Both groups are count models with the number of publications 

in 1998 and forward citation counts as the outcome variable respectively.  The regressions use 

quasi maximum likelihood Poisson models as publications and citations are non-negative counts 

and over-dispersed.  The over-dispersion in dependent variables prevents the use of standard 

Poisson models in which it is assumed that the mean and variance of the variable distribution are 

equal.    

 

Dependent Variables 

Three outcome variables are constructed to measure publication and publication quality.  

The first variable is a dummy variable that simply indicates whether the scientist in our sample 

has published an academic paper in 1998.  The remaining two dependent variables measure 

publication quantity and impact, and consist of the number of publications in 1998 as well as the 

number of forward citations these 1998 publications garner until today.  Measuring creative 

impact requires the disentanglement of novelty and creative success.  Consequently, our measure 

of publication impact is based on a social definition of creative success, where inventors and 

scientists are only thought to be creative until they receive recognition from their community or 
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society as a whole and use their work as a foundation to make further advancements (Simonton, 

1999). 

 

Explanatory Variables 

 We focus on several covariates of interest that have deeply rooted theoretical 

foundations, but very little consensus.  Therefore, we attempt to empirically validate and shed 

light on these conflicting determinants of breakthrough creation from a scientific community’s 

point of view.  

 

Periphery vs. Core. The preliminary visualization result shows that the Fire and Mello RNAi 

breakthrough arises at the periphery of the community.  We attempt in this section to 

econometrically verify our visual finding.  The sociology of science literature supports a view in 

which successful problem-solvers may not necessarily be at the core of the problem field. The 

main theoretical reasoning behind this line of work is that scientists situated at the margins of 

their community possess “focused naïveté” – a useful ignorance of prevailing assumptions and 

theories (Gieryn & Hirsh, 1984).  Consequently, they have access to differing knowledge and 

perspectives than the actors at the core.  This advantage ultimately helps them in uncovering 

potentially novel and highly impactful breakthroughs (Gieryn & Hirsh, 1983, 1984; Handberg, 

1984; Simonton, 1984).   These arguments are echoed in the organizational literature which 

argues that breakthroughs come from “outside” an extant industry (Tushman and Anderson, 

1986). 

  An opposing viewpoint stems from the more recent social networks literature which 

believes that individuals situated at the core get more influx and faster flow of information from 
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social ties.  As knowledge creation is viewed as a recombinant search process, scientists placed 

at the core of their collaborative network have better access to relevant information, more 

resources, and are less isolated, which in turn increases their likelihood of creating breakthrough 

work.  

An even more nuanced argument comes from sociology that argues that deviance is most 

likely from the core or the periphery (Damon & Zuckerman, 2001).  Such a “middle status 

conformity” argument proposes that people who are in the core can afford to experiment, or even 

set the trend, in opposition to accepted convention.  At the other extreme, people with little 

investment, or outsiders, have nothing to lose from deviating from convention.  Both groups 

would be more likely to experiment, and assumedly invent a breakthrough.  In contrast, people in 

the middle are most concerned about appearances and status and perceive little opportunity to 

experiment.  Hence, they would be expected to be least likely to invent a breakthrough. 

We create two measures of core mirroring both topical and structural communities that 

we constructed. The first measure relates to the collaborative core of the scientific network, in 

which the periphery/core variable is a distance measure constructed by calculating 1/number of 

nodes within each network component.  The largest component at the core contains the most 

number of nodes, and hence as ones moves further away from the largest core component our 

distance measure of core increases since the number of nodes in each component decreases.  If 

we used a simple measure indicating in which linked component the author is situated, with the 

largest component being component #1 and the smaller components having bigger component 

numbers, i.e. the closer to the core an author is the lower her component number will be, we run 

into the problem in which multiple components with the same number of nodes are randomly 

numbered sequentially by the network analytic software.  Furthermore, using a distance measure 
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avoids the subjective decision associated with what defines core versus periphery if we were to 

use a dummy variable indicating core for the nth largest components.  This structural core 

measure is depicted as the collabcore variable in the regression models. 

The second measure depicts core versus periphery from a technical standpoint. Following 

the topical construction of the scientific community working on suppressing gene expression 

using MeSH keywords, technical core is calculated by tabulating the frequency of MeSH 

keywords “RNA, Double-Stranded”, “RNA, Antisense”, and “Gene Expression Regulation” and 

all previous variants
3
 in a scientist’s publication history and normalizing by the total frequency 

of all MeSH keywords associated with a particular scientist, i.e. 

                                                                         

∑               
. The more a scientist’s 

work is focused in the key antecedent fields to RNA interference as reflected by the frequency in 

which their published works are classified under the above three MeSH keywords, the more they 

are embedded in the technical core of the community. This technical core measure is depicted as 

the techcore variable in the regression models. 

 

Specialist vs. Generalist. Similar to the periphery versus core argument, we attempt to identify 

whether breakthroughs tend to come from specialists or generalists.  According to advocates of 

marginality, a generalist is not bound to the current thinking in the focal field and can therefore 

offer different perspectives and heuristics that will drastically increase the probability of 

discovering a breakthrough (Jeppesen & Lakhani, 2010).   Whereas experts deeply rooted in their 

respective scientific domains may suffer from a curse of knowledge that limits their exploration 

beyond their immediate knowledge neighborhoods.  

                                                 
3
 Prior MeSH keywords for “Gene Expression Regulation” include “Gene Expression”, “Genes” and “Phenotype”. 

When tabulating frequency for “Gene Expression Regulation” we also incorporated counts of its prior keywords. 
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 On the other hand, specialists might be better positioned to solve a breakthrough because 

their deep knowledge in a field will enable them to optimally recombine components at their 

disposal.  Even if their search for components is limited to local maxima they are able to make 

better use of these components as their expertise enables them to find the optimal breakthrough 

solution in their given field. 

We capture the degree of expertise of each individual scientist using a publication 

cohesiveness measure that we implement based on the breadth of MeSH keywords in a 

scientist’s publications. This metric is a measure of the prominence of high-frequency peaks in 

the unique list of MeSH keyword distribution associated with every publishing author. We first 

identity the top most frequent k number of MeSH terms for each scientist and calculate 

publication cohesiveness as 
                                  

(                                  )                           
 

(Swanson, Smalheiser, & Torvik, 2006).  This cohesiveness measure is labeled as the pubcoh 

variable in our models.  According to the measure, a specialist with a narrow range of MeSH 

keywords with extremely high frequencies for the top ones will have a high value in the 

numerator, and consequently have higher cohesiveness values; whereas a generalist tends to be 

characterized by a more uniform MeSH keyword frequency distribution with higher variance and 

less defined high-frequency peaks which translates into lower numerator and cohesiveness 

values. The more cohesive a scientist’s set of publications, the narrower their breadth of 

publication and the more expertise they possess in a given field.  

 

Lifecycle. Whether a younger versus older researcher will be more at risk of breakthrough has 

also been debated in the literature.  On the one hand, literature on the burden of knowledge 

(Jones, 2009; Wuchty, Jones, & Uzzi, 2007) has been developed based on the observation that 
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innovators are not born at the cutting edge frontier of knowledge and must undertake significant 

education.  Furthermore, significant increase of the total stock of knowledge over the past few 

centuries implies that the amount of education innovators must accumulate also increases 

proportionally.  Extending Newton’s imagery of standing on the shoulders of giants, “one must 

first climb up their backs, and the greater the body of knowledge, the harder this climb becomes” 

(Jones, 2009).  Innovation increases the stock of knowledge; but in order to contribute and create 

new knowledge, innovators must first surmount the educational burden of knowledge so as to 

place themselves at the frontier of science in a position with the highest probability of adding to 

the stock.  To compensate for this ever increasing burden of knowledge, innovators and scientists 

have followed two paths: to learn more and/or to narrow their expertise.  The implication of 

more learning is a delayed contribution to the stock of knowledge thus pushing back the age of 

first contribution (Jones, 2009). 

 On the other hand from a cognitive viewpoint, Simonton has studied over the past few 

decades the relationship between age and creativity in numerous artistic and scientific fields 

(Simonton, 1989).  Although fields differ significantly across optimal creativity age, younger 

scientists were found not to be afraid to tackle hard problems, and are less weighted down or 

encultured with conventional wisdom.  They have had less time to socialize into the norms of 

established institutions and can therefore freely think outside the box increasing their propensity 

of generating breakthroughs.   

From a regression modeling standpoint, construction of scientists’ experience is proxied 

by the number of years since the year of their first publication. 
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Brokerage vs. Cohesion. Brokerage versus cohesive collaborative structures has also been 

extensively studied both in terms of knowledge creation as well as diffusion.  Brokerage was 

found to enhance innovation creativity and output since brokers occupy a nexus position in 

which diverse information flow to them first, thus enabling control over information and 

providing the best opportunity to generate new knowledge combinations (Burt, 2004).   This is 

not to say that scientists in cohesive collaborative networks are less likely to produce innovation.  

In fact, proponents of cohesion argue for the benefits of trust, redundant information paths that 

facilitates tacit knowledge transfer, shared risk taking, and easier mobilization (Obstfeld, 2005; 

Uzzi, 1997).  Reconciling the conflict between the brokerage and cohesion camps, Fleming, 

Mingo and Chen (2007) found that cohesion coupled with a researcher’s personal attributes such 

as wider breadth of publication and various prior careers increase innovation productivity as the 

diversity of personal experience counteracts the staleness of cohesive networks.  Furthermore, a 

more cohesive collaborative structure facilitates understanding of all components of the new 

knowledge, fosters a greater sense of mutual ownership of the creative product which increases 

the likeliness of the creation from being used again (Obstfeld, 2005; Uzzi, 1997).   

In terms of variable construction, network cohesion, constraint, is calculated using 

Burt’s constraint (Burt, 2004), and the number of prior professional affiliations, naffil97, is 

extracted from a history of affiliation data. 

 

Control Variables 

Publication History.  We control for unobserved heterogeneity in the ability of scientists using 

publication history.  The role of publications on the diffusion of innovation and knowledge has 

been addressed by various streams of literature in both the economics and sociology traditions.  
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Publications facilitate the diffusion process through disclosure of codified knowledge.  A few 

institutional mechanisms are at work.  Merton’s norm of communalism (Merton, 1957) – the 

common ownership of scientific discoveries, according to which scientists give up intellectual 

property rights in exchange for recognition and esteem – combined with the winner-take-all 

importance accorded to scientific priority incentivizes scientists to be first at publishing their 

findings (Dasgupta & David, 1994).  Not only do scientists gain respect from peers for 

publication achievements, they also obtain pecuniary recognition in the forms of renewed grants 

as well as promotions since publications are a critical performance evaluation criterion in 

universities, research institutions and science-based firms.  To ascertain their primacy, scientists 

publish their new ideas and results to relay them to peers.  And in this process, as scientists 

compete fiercely to be the first to discover and publish, they disseminate their ideas to the 

scientific community hence contributing to the overall stock of knowledge in society.  This self-

reinforcing mechanism between publication and scientific priority, thus, leads to the reasoning 

that the more publications a researcher publishes the more likely is it for their subsequent work 

to get reused.  We control for these effects by using a count of the number of publications since 

first publishing until the year prior to the 1998 breakthrough, npub97, as well as the number of 

aggregated forward citations for these publications, nforwcite97.  Since we employ the quasi 

maximum likelihood Poisson count model in our regressions and both variables are counts, we 

take their natural logarithm and denote them respectively as lnpub97 and lnforwcite97. 

 

Lone scientist vs. Team of scientists. Whether lone researchers versus teams of researchers are 

sources of breakthrough innovation is another frequently debated question in the innovations 

literature.  Recent studies show a continuing and increasing trend for teams to contribute to the 
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production of knowledge through paper and patent publications in all natural and social science 

domains (Wuchty et al., 2007).  Again alluding to arguments from the burden of knowledge 

theory, to compensate for an ever increasing body of knowledge innovators and scientists have to 

narrow their expertise (Jones, 2009), which translates to reduced individual capabilities which 

forces innovators to work more predominantly in teams.  Furthermore, using patent data and 

moving away from the conventional analyses of the mean to incorporate tails of the citation 

distribution, two mechanisms in which collaboration fosters breakthrough emergence are found 

to be at work (Singh & Fleming, 2010). Rigorous selection processes attributed to circling ideas 

for critique by co-inventors decrease the likelihood of poor outcomes on the left-hand tail of the 

distribution, while the probability of obtaining radical outcomes is increased due to the greater 

opportunity in the creative search process to recombine diverse components stemming from the 

collectivity of collaborators.    

Proponents of the lone superstar have argued that even though teams bring greater 

collective knowledge and effort, there are also significant costs to increased teamwork such as 

social network and coordination losses. Therefore a shift to teamwork may be a costly 

phenomenon that promotes low-impact science. However, evidence from the papers discussed 

above (Singh & Fleming, 2010; Wuchty et al., 2007) suggests that teams produce more highly 

cited work in each broad area of research. Furthermore, the citation advantage of teams has also 

been increasing with time when teams of fixed size are compared with solo authors. 

We capture the number of co-authors each scientist collaborates with when publishing by 

calculating the degree network measure of each author node – number of directly linked 

neighboring nodes to focal node – and denote that variable using ncoauthor97. Following the 
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same reasoning as variables lnpub97 and lnforwcite97, we take the natural logarithm of 

ncoauthor97 when entering the variable in our regressions and denote it as lncoauthor97. 

 

Affiliation. We also control for the current affiliation of researchers working in academia or 

corporations affect the impact of scientist’s publications differently.  Due to the institutional 

priority-based rewards system in science, higher-quality researchers may be willing to trade off 

more income in private firms to earn the higher expected prestige rewards in academia (Stern, 

2004), especially when they are given the authority to direct their own research agendas into 

areas that they perceive as high-risk breakthrough areas.  Thus higher-quality scientists tend to 

choose academia over private corporations, since researchers in academia are allowed more 

flexibility in pursuing their individual research agendas than in for-profit organizations.  The 

scientist’s current professional affiliation is coded from the affiliation with the most occurrences 

in the last ten papers she published and stored in variable acadaffil.  

 

Prestige. Ranking of institutions in which scientists have been affiliated with is also an indicator 

of the breakthrough potential of an individual. Most university rankings are based on several 

criteria, one of which is the quality of research publications it produces. Thus as a researcher has 

been admitted to or is a faculty member of a prestigious institution, it can be assumed that they 

have undergone a selective admissions process which should attest to their research capabilities. 

Consequently, we control for the prestige of a scientist’s affiliated institution by depicting the 

number of times the individual’s past affiliations is associated with a top-tiered – top 50 – overall 

research university as ranked by U.S. News in 1998 and store the information in variable 

prestige.     
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Results 

Table 1 shows the summary statistics – mean, standard deviation, minimum and 

maximum – for each variable used in the logit and quasi maximum likelihood, and also provides 

a short description of each variable.  Table 2 shows the correlation matrix of covariates, which 

does not indicate any excessive correlations among covariates.   

[Insert Table 1 about here] 

[Insert Table 2 about here] 

 Table 3 reports the regression results for the quasi maximum likelihood Poisson models 

we ran using the number of 1998 publications (NPub98) as outcome variable.  We first start by 

running a baseline model including only control variables – natural log of number of prior 

publications and citations garnered by these publications, type of affiliation whether academic or 

not, number of previous affiliations and affiliation prestige – as covariates in model 1.  As 

expected a scientist’s productivity is positively and significantly affected by academic affiliation, 

the number of prior publications up to 1997 she possesses, and the number of collaborators.  

Surprisingly the number of affiliations and the number of forward citations for pre-1998 

publications negatively and significantly affect publication productivity in 1998.  The slight 

negative relationship between the number of forward citations for pre-1998 publications and 

productivity in 1998 is very illustrative of the saying “quality versus quantity”. We can feasibly 

conceive that a researcher preoccupied with publishing as many papers as possible aims for 

quantity at the expense of quality. Moreover, a researcher’s affiliation prestige does not 

significantly affect 1998 publication count. This result again reinforces the quality over quantity 

argument, and in line with impact-based ranking methods of top-tiered institutions, prestige does 

not affect publication quantity but rather publication value.   
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In the subsequent models, we incorporate our explanatory variables of interest.  We first 

look at their separate effects by running the baseline model plus each individual covariate in 

models 2 to 5.  Model 2 adds Burt’s constraint measure as the sole covariate and yields no 

significant effect on publication count.  Model 3 sheds light on the specialist versus generalist 

debate by including the measure of publication cohesiveness which yields a negative and 

significant effect on the dependent variables. Thus the least concentrated the expertise of a 

scientist the more publications she produces in 1998. Model 4 depicts the core versus periphery 

arguments by incorporating both technical and collaborative measures of core. Technical core 

does not result in a significant relationship; however, the results pertaining to collaborative core 

show that the further away a scientist’s collaborative network component is from the largest core 

component the less productive they are. Finally, model 5 looks at the lifecycle theme and finds 

that younger scientists are more productive. 

The full model that incorporates all covariates is presented in model 6 and most of the 

variables significant in the previous models have maintained their significance. For instance, the 

effect size for a one standard deviation increase in the collaborative core measure, i.e. moving 

one standard deviation away from the core, is associated with a 6.7%
4
 decrease in the number of 

publications using the coefficient from the full model.  Similarly, the effect size of publication 

cohesion is such that a one standard deviation increase in publication cohesion decreases the 

number of publications in 1998 by 6.3%
5
 in the full model.  While a one standard deviation 
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      (               )
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5
 
 
      (                       )

       (           )
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increase in a researcher’s experience decreases publication production by 35.1%
6
 in the full 

model.   

[Insert Table 3 about here] 

 Table 4 depicts similar quasi maximum likelihood Poisson regression results as in Table 

3, but this time using the number of forward citations to the 1998 publications (NForwCite98) as 

the outcome variable.  The analysis format is also comparable as we start with the baseline 

model with control variables – natural log of number of prior publications and citations garnered 

by these publications, type of affiliation whether academic or not, number of previous affiliations 

and affiliation prestige – as covariates. Because this new set of regressions employs impact of 

1998 publications as the dependent variable, we would expect a scientist’s prior impact to be 

positively and significantly correlated, and indeed we observe this result. Similar to the baseline 

results in the previous group of regressions, we find forward citation counts to be positively and 

significantly affected by academically affiliated researchers and the number of collaborators.  

The number of affiliations up to 1997 and the number of pre-1998 publications negatively and 

significantly affect 1998 publication impact.  Prestige, on the other hand, is positively and 

significantly correlated with 1998 publication impact. These results – positive coefficient on 

prestige and negative coefficient on prior publication productivity – reflect the differentiation 

between quality and quantity as the more prestigious top-tiered research institutions are ranked 

based on their research impact.   

Similar to the analysis format for the count regressions with 1998 publication 

productivity as outcome variable, we incorporate each explanatory variables of interest 

independently in the models that follow.  We first look at their separate effects by running the 
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baseline model plus each individual covariate in models 2 to 5.  Model 2 adds Burt’s constraint 

measure as the sole covariate and yields no significant effect on publication impact.  Model 3 

includes publication cohesiveness, but is inconclusive as to whether specialists or generalists are 

more at risk of breakthrough innovation. Again, model 4 depicts the core versus periphery 

arguments by incorporating both the technical and collaborative measures of core. Unlike in the 

productivity cases, technical core does result in a negative significant relationship with 

publication impact and shows that scientists at the technical periphery tend to produce more 

impactful papers; whereas, collaborative core has no significant effect on publication impact. 

Finally, model 5 looks at the lifecycle theme and, consistent with productivity results, finds that 

younger scientists are more productive. 

The full model that incorporates all covariates is presented in model 6. Most variables 

that were significant in the previous models have maintained their significance. For instance, the 

effect size for a one standard deviation increase in the technical core measure is associated with a 

14.3%
7
 decrease in publication impact using the coefficient from the full model.  Thus scientists 

at the technical periphery are more likely to publish breakthrough papers. Furthermore, the effect 

size of experience is such that a one standard deviation increase in experience decreases the 

number of publications in 1998 by 42.4%
8
 in the full model.   

 [Insert Table 4 about here] 

 

Discussion and Conclusion 
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The above results not only shed light on competing theories of breakthrough emergence, 

but also illustrate the fundamental distinction between publication productivity and impact. 

Referring back to the core vs. periphery, brokerage vs. cohesion, generalist vs. specialist and 

young versus experienced debates, our results show that they contribute differently to a 

researcher’s productivity and subsequent impact. For instance, the generalist versus specialist 

debate was only conclusive for productivity but not impact, where we observed that generalists 

are more productive than specialists. The only consistent result we obtained was with respect to 

the younger versus older debate. Younger researchers are not only more productive they are also 

more prone for breakthrough, lending empirical evidence to Simonton’s argument that younger 

scientists have had less time to be weighed down and encultured by the conventional wisdom of 

their fields (Simonton, 1989). Surprisingly, our results do not offer any clarification in the heated 

brokerage versus cohesion debate. Both in terms of productivity and impact, our regression 

results did not yield any significance.  

The most interesting result stems from the core versus periphery debate. Technical 

periphery is a significant predictor of breakthrough innovation, whereas collaborative core is a 

significant predictor of knowledge production. On the one hand, scientists at the technical 

periphery are familiar with and have access to a broader knowledge base and more fields of 

study, which they can freely recombine components originating from seemingly disconnected 

fields. Together with the reasoning of focused naïveté, scientists at the technical periphery of 

their community have increased potential of uncovering highly impactful breakthroughs.  On the 

other hand, collaborative core is associated with increased productivity and is in line with the 

viewpoint that individuals situated at the core enjoy more influx and faster flow of information 

from social ties. These results may be an empirical reflection of the middle status conformity 
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theory, where people at the two extremes – core and periphery – can afford to experiment in 

order to set a new trend in the case of the former, or have nothing to lose from deviating from the 

convention in the latter. Our results show that those at the collaborative core do experiment more 

and are more productive, but the increased experimentation does not necessarily result in 

breakthroughs. Conversely, those at the technical periphery are more at risk of breakthrough.  

Without doubt, these intriguing results warrant further detailed analysis, and the question of 

breakthroughs emerging from the core or periphery of a technical and/or collaborative 

community can be the focal research question of a subsequent paper. 

Despite shedding light on several debates within the literature with regard to factors that 

increases the likelihood of breakthrough emergence, this paper suffers from two main 

limitations. First, even though we have empirically verified several theoretical debates, we still 

lack an in-depth understanding of the mechanism of breakthrough emergence. Thus, this work 

also serves a prequel to our inductive theory building paper in which we plan to interview not 

only the researchers who discovered the breakthrough but also those at risk, complementing the 

quantitative analysis so as to tell a more comprehensive story. It enables us to develop two 

sampling methods – residual analysis and matching methods – that determine the list of scientists 

to interview in our qualitative field work. Residual analysis identifies scientists who significantly 

underperformed or over-performed in terms of productivity and impact with respect to 

predictions from our regression models, while the matching method of interviewee sampling 

allows us to find individuals most similar to the winning scientists and understand why these 

matched scientists were not successful in discovering the breakthrough. 

 Second, the reader might wonder about the generalizability of our results given that we 

have explored the emergence of breakthroughs in the context of a single case study. Our focus on 
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the RNA interference breakthrough is partly due to the constraint of the qualitative paper in 

which it is difficult to interview scientists with highly impactful publications in all disciplines. 

As part of our future we intend to move up levels of analysis from individuals to communities 

and study the emergence of breakthroughs amongst many communities.  

 In conclusion, this paper summarizes a study that aims at understanding where a 

breakthrough comes from within a scientific community.  It employs a mixture of quantitative 

regression analysis and network visualization methods to empirically answer our research 

question through a case study of the RNAi breakthrough.   

This project is the first piece of a larger research agenda studying the co-evolution 

process of science and technology.  The present study identifies where a breakthrough arises and 

its subsequent impact at the individual level of analysis.  Future studies will build on the results 

of this project.  An immediate follow-on study could explore the same research questions but 

focusing on teams as the level of analysis.  Studies have shown that lone scientists and inventors 

producing significant breakthroughs are becoming more and more a myth (Singh & Fleming, 

2010; Wuchty et al., 2007).  Thus we can ask questions such as what mixture of characteristics in 

team members yield the optimal group with the highest probability of breakthrough.  These 

characteristics can include the mixture of team members’ age or tenure, disciplines, expertise 

depth within a field, frequency of prior collaboration, degree of knowledge overlap, etc.  Another 

future study based in the epoch prior to breakthrough can generalize and test the theoretical 

findings obtained in this present article deductively at the community unit of analysis using a 

novel database that combines MedLine academic paper and patent databases.  A generalized 

theory for emergence of scientific breakthroughs will inform policy decisions and help grant 

funding agencies decide who to sponsor.      
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Once a breakthrough has occurred, research can be undertaken to understand how 

knowledge generated in science flows into technology and conversely how technology may 

influence science.  The existing literature on the co-evolution of science and technology is fairly 

thin, whereas for the most part, studies have focused on either science (McFadyen et al., 2009) or 

technology (Allen, 1977; Fleming et al., 2007).  Those that looked at the interplay of science and 

technology have not explored the collaborative networks of scientists and inventors (Azoulay, 

Ding, & Stuart, 2009; Cockburn & Henderson, 1998).  The very few that began to consider how 

the collaborative networks of scientists and inventors co-evolve and mutually influence each 

other have, however, generally been at the level of the paper-patent pair (Murray, 2002).  No 

work has studied co-evolution at the level of analysis of the entire network (overlayed science 

and technology networks) for a given scientific breakthrough.  None have taken a global but 

detailed individual researcher perspective, and compared different examples of the transfer and 

influence of knowledge between science and technology. Furthermore, none have temporally 

traced the development of a scientific breakthrough through various stages of its growth from the 

pre-breakthrough period, to the post-breakthrough pre-commercialization phase, and finally to 

the post-commercialization era.  
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Figure 1. The community of science researchers prior to the Mello Fire RNA interference 

breakthrough (1993-1998).  Red nodes illustrate scientists who only publish papers, blue 

nodes indicate scientists that also publish patents, green that only patents, and links represent 

co-authorship. 
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Table 1. Descriptive Statistics of Variables Used in Regression Models 

 

Variable Mean 
Std. 
Dev. Min Max Description 

Pub98 0.83 0.38 0.00 1.00 
Dummy variable indicating whether 
scientist published or not in 1998 

npub98 3.47 5.09 0.00 87.00 
Count variable for number of 
publications in 1998 

nforwcite98 31.28 92.68 0.00 2321.00 
Count variable for number of forward 
citations to focal 1998 publications 

npub97 47.01 72.14 1.00 1181.00 

Count variable for number of 
publications from start of career to 
1997 

lnpub97 3.11 1.27 0.69 7.07 

Natural logarithm of count variable for 
number of publications from start of 
career to 1997 

nforwcite97 474.93 1145.94 0.00 15921.00 
Count variable for number of forward 
citations to all publication up to 1997 

lnforwcite97 4.76 1.85 0.00 9.68 

Natural logarithm of count variable for 
number of forward citations to all 
publication up to 1997 

ncoauthor97 5.15 3.80 1.00 42.00 
Count variable for number of co-authors 
up to 1997 

lncoauthor97 1.67 0.54 0.69 3.76 
Natural logarithm of count variable for 
number of co-authors up to 1997 

acadaffil 0.99 0.11 0.00 1.00 
Dummy variable indicating whether 
scientist published or not in 1998 

naffil97 1.92 0.98 1.00 7.00 
Count variable for number of affiliations 
associated to scientist up to 1997 

prestige 0.67 0.96 0.00 5.00 
Measure of affiliation institution's 
reputation  

constraint 0.70 0.26 0.13 1.39 Network measure of Burt's constraint 

pubcoh 0.47 0.06 0.30 0.80 
Measure of publication breadth in a 
scientist's publications up to 1997 

collabcore 0.16 0.14 0.00 0.50 Measure of collaborative core 
techcore 0.02 0.03 0.00 0.22 Measure of technical core 

experience 14.61 10.88 0.00 51.00 
Number of years from first publishing to 
1997 
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Table 2. Correlation Matrix of Covariates 

 

    1 2 3 4 5 6 7 8 9 10 11 

1 lnpub97 1 
          2 lnforwcite97 0.7726 1 

         3 lncoauthor97 -0.0017 -0.0687 1 
        4 acadaffil 0.0316 0.035 0.0091 1 

       5 naffil97 0.5307 0.4216 -0.0546 0.0519 1 
      6 prestige 0.1595 0.2575 -0.084 -0.0069 0.1069 1 

     7 constraint -0.003 0.0508 -0.8969 -0.0179 0.056 0.0613 1 
    8 pubcoh 0.3035 0.2404 -0.0747 0.0308 0.0902 0.0626 0.071 1 

   9 collabcore 0.0364 0.0719 -0.6883 -0.0016 0.0841 0.0602 0.754 0.0394 1 
  10 techcore -0.2133 -0.1259 0.0652 -0.0252 -0.1054 -0.0335 -0.0416 -0.0741 -0.0448 1 

 11 experience 0.8288 0.6284 -0.0592 0.0315 0.6504 0.0931 0.0569 0.2078 0.0912 -0.1701 1 
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Table 3. Quasi Maximum Likelihood Poisson Model with NPub98 as Dependent Variable (N= 1,886) 
 
------------------------------------------------------------------------------------------------------------ 

                      (1)             (2)             (3)             (4)             (5)             (6)    

                   npub98          npub98          npub98          npub98          npub98          npub98    

------------------------------------------------------------------------------------------------------------ 

npub98                                                                                                       

lnpub97             0.743***        0.748***        0.742***        0.750***        0.737***        0.980*** 

                 (0.0384)        (0.0382)        (0.0382)        (0.0376)        (0.0394)        (0.0400)    

 

lnforwcite97      -0.0322+        -0.0381+        -0.0327+        -0.0319+        -0.0296         -0.0352+   

                 (0.0194)        (0.0198)        (0.0194)        (0.0192)        (0.0194)        (0.0184)    

 

lncoauthor97        0.146***        0.149***        0.110           0.134***       0.0689          0.0611    

                 (0.0403)        (0.0403)        (0.0808)        (0.0399)        (0.0560)        (0.0769)    

 

acadaffil           1.396***        1.406***        1.394***        1.408***        1.393***        1.402*** 

                  (0.277)         (0.277)         (0.277)         (0.284)         (0.279)         (0.292)    

 

naffil97           -0.264***       -0.265***       -0.263***       -0.266***       -0.260***       -0.118*** 

                 (0.0336)        (0.0339)        (0.0336)        (0.0329)        (0.0334)        (0.0316)    

 

prestige                           0.0296                                                         0.00981    

                                 (0.0226)                                                        (0.0225)    

 

constraint                                        -0.0848                                           0.111    

                                                  (0.179)                                         (0.184)    

 

pubcoh                                                             -1.098*                         -1.258**  

                                                                  (0.456)                         (0.426)    

 

collabcore                                                                         -0.493*         -0.477*   

                                                                                  (0.212)         (0.223)    

 

techcore                                                                           -0.574          -0.490    

                                                                                  (0.865)         (0.826)    

 

experience                                                                                        -0.0411*** 

                                                                                                (0.00409)    

 

_cons              -2.360***       -2.383***       -2.237***       -1.852***       -2.142***       -2.053*** 

                  (0.296)         (0.296)         (0.390)         (0.353)         (0.314)         (0.431)    

------------------------------------------------------------------------------------------------------------ 

N                    1886            1886            1886            1886            1886            1886    

ll                -4346.4         -4343.7         -4346.1         -4337.4         -4338.0         -4144.2    

------------------------------------------------------------------------------------------------------------ 

Standard errors in parentheses 

+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
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Table 4. Quasi Maximum Likelihood Poisson Model with NForwCite98 as Dependent Variable (N= 1,886) 
 
------------------------------------------------------------------------------------------------------------ 

                      (1)             (2)             (3)             (4)             (5)             (6)    

              nforwcite98     nforwcite98     nforwcite98     nforwcite98     nforwcite98     nforwcite98    

------------------------------------------------------------------------------------------------------------ 

nforwcite98                                                                                                  

lnpub97            -0.286**        -0.270**        -0.286**        -0.297**        -0.304***      0.00929    

                 (0.0879)        (0.0844)        (0.0877)        (0.0948)        (0.0899)         (0.106)    

 

lnforwcite97        0.816***        0.790***        0.816***        0.816***        0.825***        0.793*** 

                 (0.0488)        (0.0438)        (0.0494)        (0.0491)        (0.0492)        (0.0458)    

 

lncoauthor97        0.361***        0.384***        0.397*          0.378***        0.385**         0.453*   

                 (0.0936)        (0.0965)         (0.179)        (0.0949)         (0.140)         (0.192)    

 

acadaffil           1.650**         1.675**         1.653**         1.628**         1.615**         1.558**  

                  (0.542)         (0.543)         (0.543)         (0.536)         (0.538)         (0.539)    

 

naffil97           -0.109+         -0.114+         -0.110+         -0.105          -0.113+         0.0382    

                 (0.0637)        (0.0647)        (0.0637)        (0.0678)        (0.0635)        (0.0969)    

 

prestige                            0.107*                                                         0.0995*   

                                 (0.0462)                                                        (0.0474)    

 

constraint                                         0.0942                                           0.206    

                                                  (0.352)                                         (0.354)    

 

pubcoh                                                              1.413                           1.331    

                                                                  (2.210)                         (2.079)    

 

collabcore                                                                        -0.0313         -0.0395    

                                                                                  (0.462)         (0.486)    

 

techcore                                                                           -4.867*         -4.939*   

                                                                                  (1.997)         (1.977)    

 

experience                                                                                        -0.0507*** 

                                                                                                 (0.0149)    

 

_cons              -2.225***       -2.281***       -2.360**        -2.880*         -2.127***       -3.442*   

                  (0.585)         (0.587)         (0.793)         (1.191)         (0.631)         (1.374)    

------------------------------------------------------------------------------------------------------------ 

N                    1886            1886            1886            1886            1886            1886    

ll               -48632.0        -48239.5        -48628.0        -48507.0        -48139.3        -45256.8    

------------------------------------------------------------------------------------------------------------ 

Standard errors in parentheses 

+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001  
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