What Leads to Innovation?
An Analysis of Collaborative Problem-Solving

Randy M. Casstevens
Department of Computational Social Science

George Mason University
Fairfax, VA 22030
rcasstev@gmu.edu

January 31, 2011

Abstract

Collaboration within large groups of individuals is difficult to analyze
due to the large number of interactions involved. This paper explores
the problem-solving process of software developers with three types of
analysis. First, regression was used to investigate the effect of two problem
characteristics, size and modularity, on the innovation process. Second,
the distributions of developers per project and projects per developer was
calculated to establish if they have heavy tailed distributions like seen
in the open source community. This will examine whether heavy tailed
distributions can form over a relatively short time period, approximately
one week. Finally, the programming contests were examined to look for
evidence of creative destruction.

1 Introduction

‘Innovation’ can be viewed as any improvement over an existing solution to a
problem. Therefore, a greater understanding of the problem-solving process
may increase either the rate or effectiveness of innovation. Deriving a clearer
picture of how large groups of individuals contribute to a problem-solving task
is difficult. This is due to the large number of interactions between group
members. This problem is often compounded because distinct innovations are
difficult to compare. Studying problem solving within software development is
the ideal domain because the progression of computer code permits examination
in detail and can be self-documenting. Also, metrics for solution comparison
tend to be easier to quantify (e.g. solution quality or execution time).

Data from MATLAB programming contests were gathered and analyzed [1].
This contest data has shown to be an excellent way to explore collaborative

problem-solving. The MATLAB programming contests are different from tra-
ditional contests in that a submission is not necessarily written by a single indi-
vidual. In order for a program to be scored, the software developer must submit
it to the contest administrators. Once submitted, the program is scored and
made available to all contest participants. Any participant can use previously
submitted programs as the starting point for their submission, thus allowing for
collaboration within a competitive contest. Moreover, these contests have an
interesting mix of collaboration and competition reminiscent to the open source
software movement [2].

Currently, the programming contest data has been analyzed three ways.
First, linear regression was used to explore which characteristics of the problem
being solved are the best predictors of innovation. With a better understanding
of how the characteristics of the problem being solved influences the rate of
innovation, obstacles like Brooks’s Law may be avoided. Brooks’s Law states
that adding more software developers to a late project will make it later [3].

The second type of analysis examined the distributions of developers per
project and projects per developer to investigate if they follow a heavy tailed
distribution and possibility a power law. Power laws have been found for the de-
velopers per project and project per developer distributions in the open source
community [4]. The programming contest data provided an opportunity to ex-
amine if this type of pattern could emerge in programming contests that occur
over a relatively short time period, for approximately one week. Moreover, find-
ing these types of distributions in the programming contest data may help draw
parallels between the relatively simple programming contests and the highly
complex community of open source software developers. Studying a simpler
system that resembles the open source community may shed light onto previ-
ously unknown aspects of open source software development.

In the last analysis, changes in the submission population was recorded to
examine if there is evidence of creative destruction. In creative destruction, the
introduction of a new innovation causes other products to no longer be used and
was credited by Schumpeter as the “fundamental impulse that sets and keeps
the capitalist engine in motion” [5, pg. 83]. By calculating the diversity of the
submission population before and after a best-so-far submission, the reduction
in submission diversity could be investigated and the narrowing of the problem-
solvers focus could be measured. For comparison, the same operation was also
performed for the submissions that were not best-so-far submissions. A statis-
tical analysis was performed to see if the better submissions caused narrowing
of focus by the problem-solvers and thereby, creative destruction.

2 Problem Characteristics Regression Analysis

The regression analysis focuses on the influence of problem size and problem
modularity on software developers ability to improve contest solutions. Data
from twenty programming contests have been analyzed. There are two hy-
potheses being tested. First, problems that are more modular will have more

innovations by a larger number of contributors. Second, larger problems will
have more innovations by a larger number of contributors. The analysis provides
a quantitative way of comparing the importance of problem size and problem
modularity on the innovation process. The analysis was done with ordinary least
squares (OLS) regression on the following dependent and independent variables.

2.1 Dependent Variables

The dependent variables are the number of innovations per participant and
the percentage of participants that were innovators. An innovation is simply
anything that improved upon the best solution so far and an innovator is anyone
that submitted one of those best-so-far solutions.

2.2 Independent Variables

The independent variables are the modularity and size of the problem being
solved by the participants. The problem’s modularity and size are not charac-
teristics that are directly observable. Therefore, the participants’ submissions
were used to calculate an estimate of the modularity and size of the problem.
Modularity was measured by the average number of sub-functions of all the
submissions. Size was measured by the average number of nodes in the parse
tree of all of the submissions. The size of the parse tree is a better indicator of
program length than the number of lines of code. Number of lines of code as a
measure of program length can be misleading due to differences in programming
style that do not affect the execution of the program. Only submissions that
did not generate an error during execution and received a score where used in
these calculations.

One argument against using modularization as a predictor of innovation
is the notion that more modules simply means longer programs which is the
real reason for the increased amount of innovation. With this analysis, we can
determine which factor explains that most variation in the variables measuring
innovation.

The results discussed here used the average modularity and size for all of
the contest submissions. Separate analyses were also done for the problem
characteristics of the winning submissions and the average of the best-so-far
submissions. These other variables were highly correlated with the ones reported
here and did not change the nature of the results, so they were not included.

2.3 Excluded Data

Currently, the MATLAB programming contest website contains information
about twenty-two programming contests. Two of the contests were left out
of the analysis because they used considerably different scoring metrics. One
was excluded because it was a visualization contest and thereby, the submis-
sions do not have a objective way of being scored and compared. The other
excluded contest scored submissions based on the number of characters in the

submitted program that correctly converted the input into the desired output.
Unlike the rest of the contests, solution quality and execution time were not a
component of a submission’s score. Because this was a substantially different
scoring method from the other contests it was excluded from the analysis. The
data from the remaining twenty MATLAB programming contests were analyzed
using regression.

2.4 Regression Results

Table 1 displays the results of the regression analysis. The first two columns used
innovations per participant and the last two columns used percent of participants
that were innovators as the dependent variable. The first and third rows used the
modularity variable, average number of functions, as the independent variable,
while the second and fourth rows used the size variable, average node count of
the parse trees. The modularity variable was a significant predictor for both
innovation variables, while the size variable was only significant for one. The
size variable was not significant for the percentage of innovators variable and
provides support that problem modularization is more important than problem
size for promoting involvement by larger numbers of innovators. Furthermore,
the modularity variables had a larger effect size (measured by R-squared) than
the parse tree size variables.

3 Distributions of Developers and Projects

In open source software, it has been discovered that the developers per project
and projects per developer follow a power law distribution [4]. For this paper,
a similar analysis was performed for the programming contests. Determining
the developers was straightforward, but establishing ‘projects’ within a contest
was not quite as clear. During the contest, the participants were given the
opportunity of specifying another submission as the basis of their code. How-
ever, this information was incomplete, as this information was not always given.
Therefore, ‘projects’ were established directly from the submissions themselves.

In order to group the similar submissions to make a ‘project’, the parse tree
of each submission was generated and each function was compared with all other
functions submitted during the contest. User defined names of functions and
variables were not used during the comparison because those are easily changed
to obfuscate the code without affecting the execution of the code. Also, the
order of the branches in the parse tree were not used in the comparison, since
those changes may or may not affect the execution of the code. Furthermore, by
not being concerned with the order of the branches in the parse tree, it helped
reduce the execution time of this already long running process. The comparison
between two functions was between zero and one and measured the proportion
of parse tree nodes that were in both functions. These function comparisons
allowed the source code to be converted into a set of function types. A unique
set of function types were considered a ‘project’. Due to the large execution

Dependent, Variable:

Innovations Percent

Independent Variables: per Participant Innovators
Average Number Functions

Coefficient 0.089

p-value 0.002
Average Node Count

Coefficient 1.9E-04

p-value 0.010
Average Number Functions

Coefficient 0.007

p-value 0.044
Average Node Count

Coefficient 0.2E-04

p-value 0.061
Intercept 0.802 0.874 0.198 0.200
R-squared 0.431 0.315 0.207 0.181
Adjusted R-squared 0.399 0.277 0.163 0.136
F-statistic 13.630 8.281 4.705 3.987

Note: Values in bold are significant at the 5% level.

Table 1: Regression results from the MATLAB contests with innovations per
participant and percentage of participants that were innovators as the dependent
variables.

time and memory requirements of calculating the function types, only twelve
of the twenty programming contests with smaller number of submissions were
used for this analysis.

Figure 1 shows the developers per project and Figure 2 projects per devel-
oper. All of these plots are on a log-log scale. Most of the distributions display
a heavy tail. Furthermore, five of the developer per project distributions and
eight of the projects per developer distributions were not ruled out as being
a power law (see Table 2 and 3) using the method described in Clauset et al.
[6]. This gives some indication that a power law distribution can emerge in a
relatively short time period and with a modest number of observations.

4 Evidence of Creative Destruction

Schumpeter’s theory of creative destruction describes how existing technologies
can be replaced by a new technology. The programming contest data provides
a microcosm to study the “the perennial gale of creative destruction” [5]. There
are new approaches to the problem being introduced throughout the contest. If
creative destruction is present in the data, then it would be expected that when

107 G- 10° 10°
N AN .
N N
N N AN
N D N
N o, .
_ N ~ 0,
107 R Lo 107" N
= %S00 = S0 < S,
N o N N N
3 %%, x 107 kS 3 R o
o« N % a O350 a @
107 . ° o 107 o
. N \\
. o = N©
AN o A
- bt 107 107 -
10
10° 10" 10% 10° ¥ 10” 10° 10' 10°
Developers per Project (x) Developers per Project (x) Developers per Project (x)
(a) Ants (b) Armyants (c¢) Binpack
1076 10°G7 10° G
\\ \5\ ~\~‘
S Tl
107 s o 107" 107" e
; woo 3 3 R
X .. Oo, g ¥z ~0
< AN D T T tel
107 N o 107} . 107 s
S o N o
\\ <)
-3| M 3| 3|
10 10 10
10° 10’ 10° 10° 10' 10° 10° 10’
Developers per Project (x) Developers per Project (x) Developers per Project (x)
(d) Blockbuster (e) Flooding (f) Furniture
10° 10° 10°67
N ‘\ N
\ AN N
‘\ \\
‘\ O\
_ 1
\ 10 0 10
AL * B Ro B
x 10 * X %% X
S Yo a . I
VO oo 107 O 1079
AN o ~ O
N o s
107 s 107 107
10° ! 10° 10° ' 10 10° ' 10°
Developers per Project (x) Developers per Project (x) Developers per Project (x)
(g) Mastermind (h) Molecule (i) Sailing
10° 10° 10° 55
. . N
N .
\ ‘\
\ .
\ S .
\ 107 R 107"
3 o = X 0o 53
N4 N N AN N
§ 10 ° § s N §
\ o
a « o e N ° &
N 10 ~ 10
oo .o o
\\ \\\
\‘ o S
-2| N -3 3|
10 10 10
10° ! 10° 10°) 10° 10° ' 10°

Developers per Project (x)

(j) Sequence

Developers per Project (x)

(k) Surveyor

Developers per Project (x)

(1) Trucking

Figure 1: Developers per project for 12 of the programming contests.

10
10 10
° 4 Q\O\ \Q‘Qo
u@mo O«QO)
o
107 R, o 107" S
3 Ro 3 ANe) = EIN
N ~ N ~ N
% 5. x 107 S x
[o [N a ©
107 ° o 1079 o
o
-3 -3
10 2| 10
10° 10' 10° 0.0 i 102 10° 10’ 10°
Projects per Developer (x) Projects per Developer (x) Projects per Developer (x)
(a) Ants (b) Armyants (c¢) Binpack
10° 10° 100
° 5y N
%00,
o
1
10
< ‘5% = =
N N N
X 0 x 107 x 107
<) ~° T T
10" o o
3| 2| -2
10 10 10
10° 10’ 10° 10° 10' 10° 10° 10' 10°
Projects per Developer (x) Projects per Developer (x) Projects per Developer (x)
(d) Blockbuster (e) Flooding (f) Furniture
10° 10° 10°
o ° °o oO
Q o (e}
Ooo,
N]
) \ R
- % - & - %
< © 0 =)
Ny K Ny % N el
% 10 % % 10 2 % 10 2,
< \ 0 T % x)
| \
. <Y N
\ BN °
AN N o
o .
| o] . -2
10 10 10
10° ! 10 10° ' 10 10° ' 10°
Projects per Developer (x) Projects per Developer (x) Projects per Developer (x)
(g) Mastermind (h) Molecule (i) Sailing
10° 10° 10°
o oo o
)
o ~<Q0p o
s o oo,
. 8
= 4 = o = QQ@Q
N ® N . N
x 10 1 x 10 x 10 %
< ‘o T © T °
Y L0
< © 0
\
‘\\ ° o o
\ K
2| Y 1074 1072 N
10
10° ! 10 10° o' 10° 10° ' 10°

Projects per Developer (x)

(j) Sequence

Projects per Developer (x)

(k) Surveyor

Projects per Developer (x)

(1) Trucking

Figure 2: Projects per developer for 12 of the programming contests.

Contest Name n Zyin & P

Ants 227 1 2.94 0.00
Armyants 71 1 2.07 0.55
Binpack 258 1 3.09 0.16
Blockbuster 301 1 2.73 0.00
Flooding 229 1 2.63 0.95
Furniture 288 1 2.77 0.02
Mastermind 97 1 2.93 0.12
Molecule 177 1 2.84 0.08
Sailing 288 1 2.42 0.04
Sequence 66 1 2.87 0.05
Surveyor 165 1 3.06 0.00
Trucking 139 1 2.12 0.32

bold values are statistically significant (p > .10)

Table 2: Parameters for the developers per project distributions.

Contest Name n Zun & P

Ants 110 4 2.55 0.44
Armyants 45 3 2.21 0.24
Binpack 101 3 2.44 0.00
Blockbuster 104 14 3.54 0.66
Flooding 55 2 1.89 0.05
Furniture 55 3 1.99 0.04
Mastermind 58 4 3.16 0.75
Molecule 90 5 3.06 0.58
Sailing 62 18 3.53 0.96
Sequence 46 5 4.02 0.61
Surveyor 44 2 1.82 0.01
Trucking 74 10 3.25 0.55

bold values are statistically significant (p > .10)

Table 3: Parameters for the projects per developer distributions.

a new, better submission is introduced, then it would replace some of the other
approaches in use. Therefore, if you look at the submission diversity before
and after the introduction of this improvement, then it would be expected that
the variety of approaches being used would decrease. From looking at Figure
3, the best-so-far solutions coincide with periods of decreased submission diver-
sity. The submission diversity was calculated by looking at the 10 submissions
by unique authors before and after each submission and counting the number
of unique approaches. A negative change in submission diversity means that
the submission population became more homogeneous and a positive change in
diversity means the population became more heterogeneous.

Figure 4 shows the difference in the average change in diversity for the best-

Change in Submission Diversity

T
0

T T T T
150 200 250 300 350

A

© = Best-so-far solution Submission Number

Figure 3: Creative destruction in the Mastermind contest. The red dots show
the locations of the best-so-far submissions.

so-far solutions versus all of the other submissions. The majority of the contests
show a greater decrease in diversity for the best-so-far submissions. Also, for five
of the twelve contests, there is a statistically significant difference (using a t-test)
between the change in submission diversity of the best-so-far submissions and
the other submissions. It is also important to note that there is a tendency of
the submission diversity to decrease over the duration of a contest. As the best
approaches are discovered, less effort is placed on exploration of new techniques
and more placed on the exploitation of the best solutions.

* =significant at p < 0.05

R et e

0.0

-0.5

Average Change in Submission Diversity

| —
*
o | | —
W *
| — E—
* | —
@ | *
B Best-so-far Solutions
O Other Solutions
—
*
Ants Armyants Binpack Blockbuster Flooding Furniture ~ Mastermind ~ Molecule Sailing Sequence Surveyor Trucking

Contest Name

Figure 4: Creative destruction in twelve of the contests.

5 Discussion

This analysis provides a quantitative way of exploring the effect of problem char-
acteristics on the ability to innovate. Problem modularity and size were signif-
icant predictors of innovation, although modularity was significant for both de-
pendent variables, while size was significant for only one. The regression models
that include problem modularity achieved higher R-squared values, than those
achieved using the problem size. While these differences in R-squared values
were modest, they provide quantitative evidence that problem modularity is as
important as problem size in fostering solution improvements. Naturally, these
types of problem characteristics are expected to play a part in the innovation
process, but this type of empirical data analysis allows for comparison between
difference aspects of the problem-solving task.

The analysis of the distributions of developers per project and projects per
developer show that heavy tailed distributions can emerge in a short period
of time. It also shows that the MATLAB programming contests have similar
patterns as what is seen in the open source movement. Therefore, it may be a
more controlled way of studying open source software and its evolution.

Finally, the drop in submission diversity after the introduction of a best-so-
far solution provides evidence of creative destruction. The contests may provide
insight in how creative destruction occurs in the real world. This data analysis
is still work in progress. Hopefully this type of data analysis will give further
clues about the innovation process of groups of collaborating problem-solvers.

References

[1] “MATLAB on-line programming contest home page.” [Online]. Available:
http://www.mathworks.com/contest/

[2] N. Gulley, “Patterns of innovation: A web-based MATLAB programming
contest,” Extended Abstracts of CHI 2001, pp. 337-338, March-April 2001.

[3] J. Frederick P. Brooks, The Mythical Man-Month. Boston, MA: Addison-
Wesley, 1995.

[4] G. Madey, V. Freeh, and R. Tynan, “Understanding oss as a self-organizing
process,” The 2nd Workshop on Open Source Software Engineering at the
24th International Conference on Software Engineering (ICSE2002), 2002.

[6] J. A. Schumpeter, Capitalism, Socialism and Democracy. New York:
Harper and Row, 1942.

[6] A. Clauset, C. Shalizi, and M. E. J. Newman, “Power-law distributions in
empirical data,” SIAM Review, vol. 51, no. 4, pp. 661-703, 2009.

10

