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Abstract

Focusing on 2x2 coordination games, the concept of stochastic stability as developed by Young
(1993, 1998) is extended to take account of state dependent error and sample sizes. Both, error and
sample size are supposed to be correlated with the loss that occurred, if a player chooses a non-best
response strategy. The original predictions are robust to this change if the game’s pay-off matrix
exhibits a form of symmetry, or if only the relative potential loss from idiosyncratic play defines
the state dependent variable. If neither of these conditions is met, the state dependent version
will not necessarily determine the same Stochastically Stable State (SSS) as the original approach.
Even if these conditions are met, it is shown that in the context of state dependence, the minimum
stochastic potential is a necessary but insufficient condition to determine a convention: The SSS
must further sufficiently risk dominate the other equilibrium.
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1. Introduction

In the spirit of Max Weber’s “Wirtschaft und Gesellschaft” (Weber, 2007), the role of culture, as an
important economic determinant, has experienced a strong revival in the scientific literature since
the late 80s (Harrison and Huntington, 2000; Huntington and Harrison, 2004; Welzel and Ingle-
hart, 1999; Huntington, 1997; Ades and Di Tella, 1996; Bollinger and Hofstede, 1987), illustrating
the fundamental impact of social norms and conventions on economic development.2 Culture does
not only determine the institutional framework, but also the behaviour of economic agents. Con-
sequently, social processes and culture, though often neglected, are essential variables of economic
theory. “Culture is the mother, institutions are the children” (Etounga-Manguelle, 2004, p. 135).
The dynamics determining social conventions and norms must be therefore of special economic
interest.
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Along this line, “The Evolution of Convention” by Young (1993) is a well-known approach
that is part of a larger literature on stochastic stability (Turnovsky and Weintraub, 1971; Foster
and Young, 1990; Kandori et al., 1993; Blume, 1993; Ellison, 1993, 2000; Samuelson, 1994, 1997;
Orléan, 1995; Robson and Vega-Redondo, 1996; Morris, 2000; Bowles, 2006). The approach allows
to discriminate between potential conventions, being synonymically defined as pure Nash equilibria.
In his approach, Young does not try to explain the subtle workings of how a transition between
conventions occurs, but why we observe certain conventions to be more stable and to persist longer
than others. This article takes Young’s approach as a basis and guideline. Consequently, the
sociological intricacies of norms and conventions are not the issue of this article, but conventions in
the abstract form of the stochastic stability approach. Since the assumption of state independent
error size has been criticised, the focus will be on the state dependence both of the sample process
and the error probability by relaxing and altering some of the assumptions of the original approach.
We will observe under which conditions the original predictions are maintained.

This article focuses solely on the issue of state independence, but maintains the remaining
original assumptions, such as random, but global interactions and adaptive play. Each player
samples from the set of previous interactions and is paired randomly with any other player in his
population with positive probability.3 The first section will illustrate that reasonable assumptions
on the error and sample size will strengthen the original results for symmetric games, though not
necessarily for asymmetric games.

The second section points out a more fundamental issue in this context. The original framework
neglects the effect of random choice that occurs in the presence of a state dependent error size, since
error rates cannot be assumed to converge to zero.4 If error rates are high, the occurring randomness
from idiosyncratic play will necessitate a larger basin of attraction as a counter-force, in order for
a Stochastically Stable State (SSS ) to evolve in the long-term. Hence, for interactions with a low
potential loss owing to erroneous play, the stochastic stability approach cannot be applied directly.
A second condition must be additionally fulfilled: the one-third rule.

1.1. A short Introduction to Stochastic Stability

In the context of conventions several questions arise: Which strategies constitute a possible con-
vention? Why do certain conventions persist, whilst others are rather short-lived? Why does a
specific convention (and thus norm) emerge and not another, i.e. why do we see both similar (so
called evolutionary universals, see Parsons (1964)) but also entirely different behavioural patterns
in locally separated parts of the world? Classical game theory provides an answer to the first ques-
tion. The strategy profile defined by the convention consists of the best response strategies of each
player (type) to the strategy of the other players, implying that if a sufficient number of individuals
is believed to follow the convention, it is individually pay-off maximising to do the same. Thus a
convention describes a stable pure Nash equilibrium of an n-person game. The second question,
however, can only be insufficiently answered. Obviously, since the conventional strategy is best
response to the strategies played by all other individuals, it is best not to deviate from the strategy

3Player pairing is only restricted by affiliation to types. If types exist, a player can only be paired with players
of a different type. In “the Battle of Sexes” a man can be paired with any woman in his population, but not with
another man. Issues resulting from the restrictive assumption of global interactions and sampling will not be dealt
with in this article, and are left to a different research project.

4Notice that although Theorem 4.2. in Young (1998) provides a condition for the case of non-zero error rates, the
results obtained here are different as some of the original assumptions are changed.
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prescribed by the convention. Yet, when it comes to interactions, in which more than one Nash
equilibrium in pure strategies exist, the determination of a long-term convention is ambiguous. Why
is money accepted in exchange for goods and services? Why are economic interactions determined
by certain informal rules and not others? Why do people first let others exit the coach and only
after that enter the train? The inverse behaviour could also define a convention. The answer often
given to the third question is that the choice between conventions follows a non-ergodic (or path
dependent) process. This answer leaves to much space to chance events and unknown exogenous
variables to be able to explain the similarity of conventions in separate regions of the world.

A more adequate explanation to this question is, however, strongly connected to the second
question. The history leading to a new convention is fundamentally shaped by the underlying
conventions and norms that currently prevail. Hence, conventions and norms at one point in time
will define the historical circumstances that determine future norms or conventions (see Bicchieri,
2006 for an overview of the current literature on how existing norms affect players’ choices). The
third question thus collapses to the second. This circumstance requires an approach to discriminate
between various conventions, answering the question of why certain types of conventions prevail
over others. Kandori et al. (1993) and Young (1993) have developed similar approaches to this
question. Since it constitutes the basis for subsequent derivations, this article will focus on Young’s
approach on stochastic stability and will elaborate its basic reasoning in the following. Readers
familiar with the concept can skip to the following section 2.

Assume that for a finite player population, n different sub-populations exist, each indicating a
player type participating in the game. Strategies and preferences are identical for all individuals
in the same sub-population. The game is defined by Γ = (X1, X2, ..., Xn; u1, u2, ..., un), where Xi

indicates the strategy set and ui the utility function of individuals of type i. Hence for simplicity,
define each individual in such a sub-population Ci as player i. Assume that one individual from
each sub-population Ci is drawn at random in each period to play the game. Each individual draws
a sample of size s < m

2 from the pure-strategy profiles of the last m rounds the game has been
played.5 The idea is that the player simply asks around what has be played in past periods. Hence,
the last m rounds of play can be considered as the collective memory of the player population. In
addition to Young’s assumptions, I assume explicitly that m and s are large. This assumption is
made to guarantee that the minimum rate in the sample required to switch best-response strategy
can take any value between 0 and 1. (The example in AppendixA on page 15 illustrates an instance,
in which this is not the case.)

Each state is thus defined by a history h = (xt−m, xt−m+1, . . . , xt) of the last m plays and
a successor state by h′ = (xt−m+1, xt−m+2, . . . , xt, xt+1) for some xt+1 ∈ X, with X =

∏
Xi,

which adds the current play to the collective memory of fixed size m, deleting the oldest. Each
individual is unaware of what the other players will choose as a best response. He thus chooses
his best reply strategy with respect to the strategy frequency distribution in his sample (fictitious
play with bounded memory, which Young called adaptive play). He chooses, nonetheless, any
strategy in his strategy profile with a positive probability. Consequently, suppose that there is a
small probability that an agent inadequately maximizes his choice, and commits an error or simply
experiments. The probability of this error equals the rate of mutation ε > 0, i.e. with probability

5More precisely; the general condition is defined as s ≤ m
LΓ+2

, with LΓ being the maximum length of all shortest

directed paths in the best reply graph from a strategy-tuple x to a strict Nash equilibrium (see Young, 1993). Since
here the analysis is restricted to 2× 2 coordination games, the simplified assumption suffices.
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ε an individual j in Cj does not choose his best response x∗j ∈ Xj to his sample of size s from a

past history of interactions.6 Instead he chooses a strategy at random from Xj . Since each state
is reachable with positive probability from any initial state if ε > 0, the process is described by
an irreducible Markov chain on the finite state space Ω ⊂ (X1 × X2 × ... × Xn)m. Not all states
are, however, equally probable. In order to shift a population from some stable equilibrium (i.e.
convention), at which players only remember to have always played the same strategy, defined by
strategy profile x∗t = (x∗1(t), x∗2(t), . . . , x∗n(t)) and history hk = (x∗t−m, x∗t−m+1, . . . , x∗t) to some
other stable equilibrium defined by x

′t and hl = (x
′z−m, x

′z−m+1, . . . , x
′z) in time z, requires that

a sufficiently large number of individuals idiosyncratically chooses a non-best response strategy to
move the population out of the basin of attraction of the equilibrium defined by hk into the basin
of attraction of another equilibrium, so that x

′

i is eventually a best response to any sample drawn
from m.

For each pair of recurrent classes Ei, Ej from the set of recurrent classes E1, E2, . . . , Ek in the
non-perturbed Markov process, a directed ij-path is defined by a sequence of states (h1, h2, ..., hz) ∈
Ω that goes from Ei to Ej . Define the resistance r(h, h

′
) as the number of mistakes (perturbations)

necessary to cause a transition in each period from any current state h to a successor state h′

connected by a directed edge, implying that the transition from h to the successor state h
′

in an

n-person game is of order εr(h,h
′
)(1 − ε)n−r(h,h

′
). (If h

′
is a successor of h in the non-perturbed

process resistance is 0. If h
′

is not a successor state both in the perturbed and unperturbed process,
the resistance is equal to∞.) The resistance of this path is given by the sum of the resistances of its
edges, rσ = (r(h1, h2) + r(h2, h3) + . . .+ r(hz−1, hz)). Let rij be the least resistance over all those
ij-paths. Hence, there exists a tree rooted at vertex j for each recurrent class Ej that connects to
every vertex different from j. Notice that connections can be defined by a direct or indirect path
leading from any other vertex k for Ek to j for Ej , with k 6= j, in the perturbed process. A path’s
resistance is thus given by the sum of the least resistances rij over all the edges in the tree. The
stochastic potential for any Ej is defined as the least resistance among all these trees leading to
vertex j. The recurrent class with least stochastic potential determines the Stochastically Stable
State. Remember the least resistance path can be direct or indirect, and takes further account
of all strategies in the strategy set. In other words, an SSS is the equilibrium that is the easiest
accessible from all other states combined.

The assumption of the stochastic stability approach that errors are state and pay-off independent
has been criticized (Bergin and Lipman, 1996; Bowles, 2006). Yet, the same type of criticism applies
to the state independent sample size. It will be illustrated in this article that major changes are
not required in Young’s approach to take this circumstance into account. The following section will
thus include pay-off dependent sample and error size into the calculation of the resistances. The
method is based on an approach of Young (see Young, 1998, Theorem 4.1) and the work of (van
Damme and Weibull, 1998). This article will show that stochastic stability still holds under the
assumption of state dependence under most conditions. It also illustrates that there is a significant
difference between assuming state dependent sample size and error size, if different player types
interact. Sample size affects the rate at which a player type directly observes mutations and is
dependent on the pay-off this player type has at the current equilibrium state. In contrast, error

6Strictly speaking the error rate is given by λjε for player j and has full support, i.e. all strategies in Xj are
played with positive probability whenever an error occurs or the player experiments. Note, however, in the standard
case the SSS is independent of λj and the probability, with which a strategy is randomly chosen.
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size affects the rate at which an error is committed by the other player types: It therefore depends
on the pay-off of those other player types. Section 3 will show, however, that these assumptions
raise a crucial issue, since the error rate can be expected to be high in certain states, thus causing
a potential disruption in the transition from one convention to another.

2. State Dependent Sample and Error Size

This section will follow the approach of van Damme and Weibull (1998) to some extent. It only
considers sample and error size as loss-dependent, but generally assumes type independence (if not
mentioned otherwise), i.e. error and sample size are defined by a function that has only the pay-offs
as its arguments and is not type specific. Findings are rather similar, but will differ in various
details. Van Damme and Weibull assume that an individual can choose his error level, but has to
pay a control cost. The control cost function v(εi(ω)) is defined as a function of individual’s i error
size at the current state ω. Furthermore, the control cost function is supposed to be decreasing,
strictly convex, and twice differentiable. As in van Damme and Weibull, this article will only
consider 2×2 coordination games with two strict Nash equilibria in pure strategies, generally of the
form presented in matrix 1, with ai > ci and di > bi. (In the following index 1 is always assigned
to row players and index 2 to column players.)

( A B

A a1, a2 b1, c2

B c1, b2 d1, d2

)
(1)

Define gi(ω) = max[πi(A,ω), πi(B,ω)], and wi(ω) = min[πi(A,ω), πi(B,ω)] and thus li(ω) =
gi(ω)−wi(ω), given the current conventional state ω. The expected pay-off is then determined by
πi = gi(ω)− εi(ω)li(ω)− δv(εi(ω)), where l defines the loss in the case, where an error is committed
and the non-conventional (non-best response) strategy is played. In addition to the approach of van
Damme and Weibull, εi is assumed either to be a function of the sample size si(ω), implying that
the larger si(ω) the lower the probability of drawing a skewed sample from the collective memory
m. Additionally, the error probability is assumed to be directly controllable by each individual and
is determined by an exponent γi(ω) and the exogenous “baseline error ε”, such that εi(ω) = εγi(ω).
The idea is that individuals try to stabilise their trembling hand if stakes are high, whereas they
are more inclined to explore alternative strategies if potential loss is small. Further let us assume δ
equals 1, ε to be restricted to the unit interval, and the baseline error ε to be exogenous. Therefore
expected profit is given by

(2)πi = gi(ω)− εi(si(ω), γi(ω); ε)li(ω)− v(εi(si(ω), γi(ω); ε))

Given the previous assumptions, v(εi(si(ω), γi(ω); ε)) is strictly convex and twice differentiable in
εi, and εi is strictly decreasing both in si(ω) and γi(ω). Hence the marginal cost function −v′(.)
will be decreasing in εi and increasing in si and γi. Maximizing the expected pay-off yields

l = −∂v[εi(s, γ; ε)]

∂εi
. (3)

For the general 2×2 coordination game assume that ω and ω′ denote the two possible conventional
states of the world. As before εi(ω) is the mutation probability of type i = 1, 2 in states ω, si(ω)
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is the corresponding sample size, and γi(ω) is defined as such that εi(ω) = εγi(ω). Given the
definition above li(ω) defines the loss function of player i in state ω as the loss that occurs if player
i erroneously plays his non-best response with respect to state ω. Thus the loss function is defined
as l1(ω) = π1

ωω − π1
ω′ω for the row players, and l2(ω) = π2

ωω − π2
ω′ω for column players, if π1 and

π2 indicate the corresponding pay-offs in the pay-off matrix for each player type and the first part
of the index the state to which the player chooses the best response strategy and the second part
the actual state. Notice that error and sample rate depend only on the expected loss, but are type
independent, since the cost control function and the baseline error is identical for all types. It
follows from equation 3 that

(4)li(ω) < lj(ω
′)⇔ εi(ω) > εj(ω

′)⇔ si(ω) < sj(ω
′)

⇔ γi(ω) < γj(ω
′), for i, j = 1, 2.

In 2 × 2 coordination games, only two equilibria in pure strategies exist and both equilibria
are connected by only direct paths. The reduced resistance is defined by the minimum share of
non-best response plays in the sample, which is necessary to induce best response players to switch
their strategy. If the sample and error size are state and type independent, both can be normalised
to 1 and the reduced resistances will equal the stochastic potential. It suffices thus to compare only
the two reduced resistances along the direct paths (one for each player type).

For 2×2 coordination games and state independent sample and error size, the reduced resistances
are defined as follows:

(5a)rAB = min

(
a1 − c1

a1 − b1 − c1 + d1
,

a2 − c2
a2 − b2 − c2 + d2

)
and

(5b)rBA = min

(
d1 − b1

a1 − b1 − c1 + d1
,

d2 − b2
a2 − b2 − c2 + d2

)
(5c)or more succinctly: rAB = α ∧ β and rBA = (1− α) ∧ (1− β)

where A and B describe the pure Nash equilibria defined by their corresponding strategies, and α
and β define the minimum population frequencies in the sample, necessary to induce best-response
players to switch to strategy B. Obviously in this case the SSS is equivalent to the risk dominant
Nash equilibrium. (for detailed proofs, refer to Young, 1993, 1998).

The symmetric case describes a game, in which a player’s position is irrelevant, i.e. pay-offs are
independent of the indices in matrix 1. The following two propositions hold in the presence of state
dependent sample size s(ω) given convention ω (see AppendixA for proofs) of this section:

Proposition 1. For the symmetric case with state dependent sample size the resistances are de-
termined by

(6a)rsAB = αs(A)
(6b)rsBA = (1− α)s(B)

Proposition 2. In the case of two different player types i = 1, 2 and state dependent sample size
si(ω), the resistances are defined by

(7a)rsAB = αs1(A) ∧ βs2(A)

(7b)rsBA = (1− α)s1(B) ∧ (1− β)s2(B).
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Since the matrix’s pay-offs can be changed by a positive affine transformation and only relative
sample values are of interest, suppose that in the case of symmetric pay-offs it holds by normal-
isation that s(A) 6= s(B) = 1. Then the equilibrium sample size s∗, at which both equilibria are
stochastically stable, is given by s∗ = 1−α

α . For all s(A) > s∗, hA is the sole Stochastically Stable
State. In the case of s(A) < s∗ the SSS is defined by hB .

For state dependent error size, defined by εγi(ω) = εi(ω), and normalised state independent
sample size (s1,2 = 1), the following two propositions hold:

Proposition 3. In the symmetric case with state dependent error size, resistances are given by

(8a)rγAB = αγ(A)

(8b)rγBA = (1− α)γ(B).

Hence, a decrease (increase) in error size from ε(ω) to ε(ω
′
), with ε(ω′) = ε(ω)ζ and ζ > 1 (ζ < 1),

is equivalent to an increase (decrease) of the sample size si(ω) by ζ.

Proposition 4. In the general case with state dependent error size, the resistances are given by

(9a)rγAB = αγ2(A) ∧ βγ1(A)

(9b)rγBA = (1− α)γ2(B) ∧ (1− β)γ1(B).

In the symmetric case, the ”speed”, at which the boundary of the basin of attraction BA is
approached, directly depends on γ(A). A γ(A) > 1 reduces the error rate and decreases the ”step
size” and thus steepens the basin of attraction. The relation between sample size and error size in
the symmetric case is reasonable. A higher sample rate should decrease the probability of an error
occurring in a symmetric game.

It follows that, for the symmetric case, the unique invariant distribution of the unperturbed
Markov process, described by h∗ = h∗P , with transition matrix P and history (distribution) h∗,
can be generalised to (see Bergin and Lipman, 1996 for details).

h
′

A

h
′
B

= εm−i
∗+1−γi∗ kA[1 + fA(ε)]

kB [1 + fB(ε)]

where i∗ indicates the number of players who chose strategy B at the interior mixed equilibrium
state, at which state the error rate changes from some error rate εγ to another defined by ε. In
other words, if pij represents the probability of moving from state i to state j in the unperturbed
Markov process, then ∃i∗ such that pi0 = 1 if i < i∗, and pim = 1 if i > i∗). For m very large and
ε→ 0 this can be normalized and rewritten as:

h
′

A

h
′
B

= ε1−α−γα
kA
kB

for α defined as before. In the case of γ > 1−α
α = γ∗ the exponent is negative and the ratio goes to

∞. Hence h
′

A → 1. In the case of γ < γ∗ the ratio goes to zero and h
′

B → 1. For γ = γ∗,
h
′
A

h
′
B

→ kA
kB

.
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The general pay-off matrix in 1 can have 4 different pay-off structures. The symmetric case
is generally defined in the literature as above, i.e. it does not matter whether an individual is a
column or row player. This situation occurs in a population with only one player type. If two player
types exist, their interests can be diametrically opposed, i.e. pay-offs are defined by a matrix, in
which ai = dj and ci = bj for i 6= j. In such games pay-offs for both players are identical, but
mirrored on both diagonals of the pay-off matrix. Hence, I define such pay-off matrices as “double
mirror-symmetric”. Finally, a third type of pay-off symmetry may occur. If ai = dj , bi = bj and
ci = cj , pay-offs are only mirrored on the main diagonal. I define such a pay-off matrix as “mirror-
symmetric”. In the case, where the original pay-off matrix cannot be transformed into one of the
previous structures by a positive affine transformation of all pay-off values that is identical for both
player types (thus maintaining the relative values of all four losses), the pay-off matrix is defined
as “asymmetric”. Using the previous definitions, the following result is obtained:

Proposition 5. Assume the case, where condition 4 on page 6 holds and resistances are defined by
equations 7 in the case of state dependent sample size and equations 9 in the case of state dependent
error size.

In both cases, the original results of stochastic stability are confirmed if the pay-off structure
exhibits some form of symmetry, i.e. if it is either symmetric, mirror-symmetric or double mirror-
symmetric. Results do not necessarily coincide if pay-offs are asymmetric. Yet, the asymmetric case
confirms the results if the sample and error size are a function of the relative instead the absolute
potential loss, i.e. if both variables independent of any positive affine transformation of the pay-off
matrix.

Two games are equivalent, if the pay-off matrix of a game can be transformed by a positive
affine transformation for each player type into the pay-off matrix of the other game. Consequently
if players consider only the relative expected loss7, also the long-term evolutionary properties of
both games remain identical. In the case, where both error and sample size are state dependent,
the reduced resistances for pay-off matrix 1 propositions 2 and 4 lead to

(10a)rsγAB = αs1(A)γ2(A) ∧ βs2(A)γ1(A)

(10b)rsBA = (1− α)s1(B)γ2(B) ∧ (1− β)s2(B)γ1(B).

Furthermore, note that this approach also yields a positive relation between risk-aversion and
surplus share, if the assumption of type independence of error and sample size is relaxed:

Proposition 6. In a double mirror-symmetric coordination game with two pure Nash equilibria,
the player type that is less risk-averse can appropriate the greater share of the surplus in the case,
where sample size is state dependent. In the case, where error size is state dependent, this result
holds if γi(ω) is strictly convex in li(ω). If the function is strictly concave, the more risk-averse
player appropriates the greater surplus share.

Being more open to taking risks can, ceteris paribus, benefit the player type. This result is
coherent with findings in the economic literature (King, 1974; Rosenzweig and Binswanger, 1993;
Binmore, 1998 and for a critical discussion of empirical studies, see Bellemare and Brown, 2009)

7implying that the effect of the perceived loss on error and sample size is scale independent
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on the positive correlation between wealth and risk. If we take risk as a measure of need8, this
analytical result is the obvious relation that the needier one group is and the less it has to lose (from
punishment, social shunning, non-conformity etc.) the more likely the convention will be defined
in its favour.9

Intuitive assumption about the sample size, thus lead to the confirmation of the approach of
Young for most interactions. If equation 4 holds, the approach of Young is unaffected in the case
of state dependence for symmetric pay-off configurations or if loss is regarded in relative and not
absolute terms. Yet, the results of the state dependent approach, only constrained by equation 4,
will not coincide with the standard approach for all pay-off configurations.

Also notice the impact of state dependence on the time a player population remains on average
in an equilibrium, i.e. the number of interactions a convention endures. In a symmetric game with
N players, waiting time w is given by

w =

[
N∑

i=αs

((
N

i

)
εγi(1− ε)γ(N−i)

)]−1
w is strictly increasing in s and γ. This illustrates that not only the interpretation of what defines
an interaction (period) determines the transition time, but also the way in which potential loss
affects unconventional strategy choice. This mitigates the argument against Young’s approach that
transition should require to much time. If players interact very frequently, and error and sample
rate are low, waiting time is marginal. Yet, the critique is valid for another reason, since the state
dependence of the error and sample size entails a fundamental issue that will be discussed in the
following section. Given the assumption of state dependence, it is not guaranteed that a convention
truly evolves. In this context, it is doubtful that a repeated transition between pure equilibria
is generally possible. It might be that a completely mixed state is more likely to evolve in the
long-term than any of the two pure Nash equilibria.

3. The one-third Rule and State Dependency

In the previous analysis, I have only considered pay-off losses in the case, where a population
is located close to one of the equilibria, i.e. if a distinct convention prevails. Hence, the loss
li(ω) = πiωω − πiω′ω has been defined as the pay-off difference that occurs if a player chooses his
best strategy with respect to the absorbing state ω′, though the actual current state is defined by
the pure Nash equilibrium state ω. It has been thus assumed that a player only considers maximal
potential loss and assigns unit probability to the strategy profile defining the current convention.
On the one hand, this is a reasonable assumption if a player considers only pure conventional
strategies (or in the case of very high discount rates). On the other hand, it might be more realistic
to assume that a player evaluates his potential loss according to his sample.

Suppose that a player has to decide whether to experiment or not. Whenever the player popu-
lation is in a state of transition and moves against the force of the basin of attraction of the current

8“Recall that need is to be measured in terms of the risks that people are willing to take to satisfy their lack of
something important to them.” (Binmore, 1998, p. 463)

9This also conforms with Young, 1998, Theorem 9.1., which shows that conventions are close to a social contract
that maximises the relative pay-off of the group with the least relative pay-off.
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convention towards the other equilibrium, the player observes that other players have been exper-
imenting before. Assume that he perceives previous “experimenters” at a rate of p in his sample.
Based on this, he might expect that in the current play his counterpart will also experiment with
probability p. He thus evaluates his potential loss based on the mixed state, defined by his sample,
and on the expected loss value, by considering the loss function l1(ωp) = πωωp−πω′ωp , given that ωp

indicates a state in which players experiment at rate p. Hence, for pay-offs as in matrix 1 a player i
will compare li(A

p) = (1− p)ai + pbi− (1− p)ci− pdi and li(B
p) = pci + (1− p)di− pai− (1− p)bi.

Notice that the case in section 2 is obtained by setting p = 0, i.e. the player does not expect
his counterpart to experiment. Yet given a rate p of experimenters, not playing the conventional
strategy in hA will always incur an expected loss greater than playing the non-conventional strategy
in hB as long as a− c > d− b.

The propositions could be expanded from the case of l1(ω) to the extended case l1(ωp), and
the general results with respect to stochastic stability should persist. This is not done here, since I
believe a more fundamental issue is raised by the transition: Relaxing Young’s condition of a state
independent error entails that its frequency cannot be assumed as being generally small. If we
consider li(ω

p), the absolute size of the potential expected loss varies with the strategy distribution
in the sample, i.e. with the number of experimenters. That implies that li(ω

p) → 0, as the
distribution approaches the interior equilibrium. As the loss grows smaller, the error size increases.
At the interior equilibrium expected pay-off from both strategies is identical and hence, no expected
loss results from choosing any of the two strategies at random. As a consequence, error rates will
be close to 1 in the vicinity of the mixed equilibrium distribution; the zero limit of the error size is
inapplicable. Also in other situations error rate can generally be expected to be high and expected
loss is generally low. This is the case if potential loss is generally relatively low in comparison to
the pay-offs received in both equilibria, or cases in which sampling of information is very costly and
individuals are only weakly affected by expected pay-offs.

Consider the example of driving on the left or right. Since most people are right handed, keeping
left was indeed risk dominant. Nowadays, both conventions can be observed and are stable. They
are imposed by law and risks are high to be punished in the case of infraction. For pedestrians this
is not the case. Although to keep on the same side as driving a car is the marginal risk dominant
strategy, the costs of walking on the same side as the vis-à-vis are low and people pass both on
the left and right. Thus, we can observe a mixed equilibrium. Similar reasoning holds for the
convention to stop at a red light. A stable convention thus requires additional properties.10

In the case of state dependence, random choice plays a substantial role in the determination of a
convention. Furthermore, it is more realistic to assume that it is not necessarily the last element in
the collective memory, which is forgotten, since this also requires the individual capability to exactly
define the sequence of interactions. In the original approach, it is supposed that an individual can
sample at most half of the history of past interactions, but is still capable to assign a time frame to
each interaction. In this section, equal “death” probability is assigned to all elements, taking into
account the tendency of individuals to remember and over-evaluate rare events more strongly than
common events. A rare and extraordinary event is thus less likely to be chosen for death, since it’s
rate of occurrence is lower in m. The process by which the collective memory of size m is updated
can then be described by a stochastic death and birth process - a Moran process (for details, refer

10Observing southern European road users illustrates that stopping at red lights or keeping on the right lane is
only a stable convention if it is sufficiently enforced by law.
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to AppendixB).
Adapting the approach of Nowak (2006) shows that relaxing the assumption of an overall small

error rates would additionally require that an equilibrium generates a larger basin of attraction in
order to eligible as a long-term conventional strategy. A predominance of random errors creates
an additional invasion barrier and further, once sufficiently mixed, random choice will continuously
push the population towards a completely mixed strategy profile in which both strategies are played
with roughly equal probability. This counter-acts the selection process, which gravitates the pop-
ulation towards the Nash equilibrium inside the basin of attraction. Hence, a minimum basin of
attraction is necessary for an equilibrium to exercise sufficient gravitational pull on a population at
the completely mixed state to overcome the adverse effect of random choice. This translates to a
sufficiently small resistance on the path towards this equilibrium.

The fixation probability defines the probability of a mutant strategy to cause a switch from
some convention to that defined by the mutant strategy. It thus defines the likelihood of a switch
in conventions, i.e. the force of selection that pushes a population to the other equilibrium. If
strategy choice were completely random, fixation probability should be 1/m. This represents the
force of random choice that gravitates a population to a completely mixed strategy, since any new
strategy is added to the collective memory with equal likelihood in this case. In the presence of
high error rates it holds:11

Proposition 7. Given a large player population, playing a coordination game with two pure-strategy
Nash equilibria, a symmetric pay-off matrix and normalised sample rate si(ω) = 1. The unstable
interior equilibrium is given by a frequency of (α = (a− c)/(a− b− c+d)) players choosing strategy
B. If the error rate reaches levels close to 1, the reduced resistance rAB (or rBA) must be smaller
than 1

3 for selection to favour the convention hB (or hA). If α ∈ ( 1
3 ; 2

3 ), the fixation probability is
less than 1/m for both strategies, and random choice superimposes selection.

The graph 1 helps to illustrate proposition 7. A.) and B.) represent the expected, normalised

Figure 1: The one-third rule
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and symmetric pay-offs of two games, defined as in matrix 1 on page 5, with a1 = a2, d1 = d2, and
c1 = c2 = b1 = b2 = 0. The frequency of strategy B players defines the abscissa, the intersecting
functions show the expected pay-off for each of the strategies on the ordinate. Consequently, if a

11The proof, based on Nowak (2006), as well as some extensions can be found in AppendixB.
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player encounters strategy B players with a frequency of f his expected pay-off is either (1 − f)a
if he plays A, or fd if he plays B. In A.) pay-off d is only marginally smaller than a. The
equilibrium frequency of strategy B players given by α thus lies close to the 0.5 frequency. The
Force of Random Choice from stochastic replacement of memories pushes the distribution towards
this completely mixed half : half distribution. The Force of Selection pushes the distribution to
the pure equilibria. It increases with the distance from α and is determined by the vertical gap
between the (a− b) and the (c− d) line. We observe that at the completely mixed distribution the
Force of Selection is very small in the direction of hA. Random choice is frequent with respect to
the best response play, and so random replacement of old memories will superimpose selection by
invasion at the completely mixed distribution. In contrast, the Force of Selection is very strong at
the pure equilibria, i.e. both at hA and hB , and reduce non-best response play. This is not the
case in B.). At the completely mixed distribution the Force of Selection is much stronger in the
direction of hA, hence, the Force of Selection is sufficiently strong to push the population to hA. In
addtion, at hB the Force of Selection is very weak in the direction of hA, and random choice will
favour a transition out of the basin of attraction of hB , after which point a transition to hA will
occur.

In other words, stochastic stability is a necessary condition for a stable convention, but will
not suffice in the case of a high stochastic error rate. If the basin of attraction of all equilibria is
insufficiently large, i.e. smaller than 2/3 of the distance between both equilibria, and hence the
transition has a reduced resistance larger than 1/3, the stochastic strategy choice does not favour
any strategy. The question to be answered is indeed, whether or not it is a reasonable assumption
to expect a low mutation rate, when explaining the evolution of conventions. The higher the
risk and hence the potential loss, the longer a convention will persist, since its sample size will
be proportionally greater and its error size proportionally smaller. The idea that a society shifts
between equilibria, however, requires a population to move through the interior equilibrium during
the turnover process. Only if selection based on best response play is strong enough, the population
will be able to attain the Stochastically Stable State.12

Notice, however, that the one-third rule applies to the extreme case, in which error rate is
generally considered to be large. This will not be the case close to the pure equilibrium states, at
which only very few players experiment, and whenever the potential loss is high. In these cases,
the minimum basin of attraction lies between two thirds and one half. A solution to this issue is
postponed to later research. Yet, it may be prudent to constrain consideration to direct or indirect
paths with edges of reduced resistances smaller than one third as valid potential paths towards a
convention defining the stochastic potential.

4. Discussion and Conclusion

The discussion in this article does not fundamentally challenge the application of the stochastic
stability approach as an equilibrium refinement mechanism, since it has found identical results under
specific conditions; yet it questions the general viability of the original results. In the context of
state dependence, findings in this article contrast with the original stochastic stability approach of
Young in two important points: First, we observe that Stochastically Stable States, defined by the

12Remember that in the underlying approach, transition only occurs spontaneous and involuntarily, and is not
subject to conscious and deliberate (revolutionary) choice; or following Carl Menger, the institutions in this approach
are purely organic.
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state dependent and independent approach, do not necessarily coincide. Both approaches predict
the same SSS in the case of some symmetry between player types in the pay-off matrix or if error
and sample rates are related to the relative potential loss that occurs if players do not coordinate.
Yet, in the general case the state dependent SSS might not be the one predicted by the original
approach.

Second, the correlation between error and sample rate, and individual pay-off casts doubt on
whether all possible paths towards an equilibrium can be taken into account, when calculating the
SSS. If a path is defined by two equilibria that generate approximately the same average pay-offs
and thus risk rates, one Nash /conventional strategy cannot successfully invade another. It turns
out that in this context, minimum stochastic potential is a necessary, but not a sufficient condition
for an SSS.

There are two possible interpretations of the one-third rule and thus extensions of the stochastic
stability criterion that instantly come to mind. Either the rule implies that a Nash equilibrium with
resistance larger than one third cannot be invaded by another Nash strategy. It follows that any
path (i.e. edge) with too high resistance is considered invalid and an i-tree can only be constituted
by valid edges. This might eventually lead to a situation, in which no equilibrium is SSS as no
valid i-tree exists. Alternatively, the rule also entails that if the unstable interior equilibrium is
sufficiently close to the centre (i.e. at 1/2; the 50 : 50-state), random choice superimposes selection.
The player population will be continuously drawn back to the interior. Hence, a completely mixed
interior equilibrium at 1/2 can be considered as a potential SSS, if it lies on such an invalid path.
Which interpretation applies depends on whether a population is a priori located in a mixed state
and then moves to an equilibrium, or if it starts out from a convention and then shifts to another
equilibrium.13

The article further illustrates the difference between sample and error size. In the case of more
than one player type, both variables affect the stochastic potential of an equilibrium in a different
way. This difference is of special interest for the determination of an SSS for general games without
any symmetry in the pay-off matrix. The sole focus on a state dependent error rate is insufficient
in these cases. The state dependence of both variables can affects the player type that provokes
the transition. It not generally the case, as has been in the original approach, that the player type
that has more to lose from a shift in convention causes it (for a detailed illustration of this issue,
see Bowles, 2006, Ch. check).

Yet, the one-third rule only defines the extreme assumption, in which conventions are completely
subject to random choice (i.e. random replacement of memories). Usually, this is the case for a
small region around the interior equilibrium. One half and one third are consequently the upper
and lower bound of the condition that defines the maximum viable reduced resistance. The actual
threshold value should be adapted to the type of game and its context. It is therefore necessary
to expand the rule in a way that defines a contextual threshold value for the resistances that lies
between both values.

Further notice that the results obtained here also refer to coordination games with a larger set
of strategies. In the case of more pure Nash equilibria, the reduced resistances are given by the
minimum sum of the resistances of the edges of each directed graph towards an equilibrium in the
set of all i-trees. Yet, as is done in Young’s approach, a mere summation of the least resistances

13The former is the case if players have no knowledge of a convention and choose their first strategy at random.
The latter is the case if a convention exists and a historical change discloses an alternative convention.
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without weighting them seems problematic. If a population moves along an indirect path, it will
spend time in the basin of attraction of an equilibrium that lies on that path, making it a temporal
convention. During this time, the population will play a strategy profile close to that dictated by the
equilibrium. This might be one that strongly inhibits idiosyncratic play and will be robust against
individual errors. The state dependent error and sample size thus also applies to the resistances
along the indirect paths. The approach described herein is applicable to games with larger strategy
sets and more equilibria by weighting each individual resistances with the sample or error size
according to its convention.
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AppendixA. Proofs for Stochastic Stability

An example will help to understand the intuition before coming to the proofs . In order to
simplify as much as possible, for the length of this example, I will abstract from the loss - error
rate relation 4 on page 6, and from the assumption of a relatively large sample size as well as the
condition that s ≤ m

2 . (The example will also make it evident why this has been initially assumed.)

Example: Consider two players, who meet each other on a narrow road once a day, and have to
decide whether to cross on the left or right. Hence, they play a 2× 2 coordination game. Assume
that players have a very short memory and remember only the last 2 moves (mi,t = (xj,t−1, xj,t)).
Memory size is identical to sample size. Each state of the game can thus be represented by a
vector of four components (ht = (mi,mj)). Further assume that players are symmetric, therefore
ht = (mi,mj) = (mj ,mi). The 10 possible states are then defined as (ll,ll), (ll,lr), (ll,rl), (ll,rr),
(lr,lr), (lr,rl), (lr,rr), (rl,rl), (rl,rr), and (rr,rr). Each player chooses his best response to his
memory of the opponent’s last two actions. Obviously (ll,ll) and (rr,rr) are absorbing states, as
the best response to rr is always r and to ll always l. Assume that both equilibria provide the
same strictly positive pay-off, and that mis-coordination gives zero pay-off. In the case, in which
a player has a “mixed memory” of the opponent’s play, i.e. rl or lr, he chooses l or r both with
probability 1

2 . In the unperturbed Markov process, states (ll,ll) or (rr,rr) will persist forever, once
they are reached. State (ll,lr) will move to state (ll,rl) or (lr,rl), each with probability 1

2 .
Now assume that a player commits an error with a low probability and does not choose his best

response strategy. Let the case, in which he has memory ll and chooses r, occur with probability
λ and the second case, in which he has memory rr and chooses l, occur with probability ε. Let
the states’ position be as in the previous enumeration, starting with (ll,ll) and ending with (rr,rr).
The transition matrix of the perturbed Markov process is then defined as in matrix A.1

P ε =



(1 − λ)2 2(1 − λ)λ 0 0 λ2 0 0 0 0 0
0 0 (1 − λ)/2 λ/2 0 (1 − λ)/2 λ/2 0 0 0

(1 − λ)/2 1
2

0 0 λ/2 0 0 0 0 0

0 0 ε(1 − λ) ελ 0 (1 − ε)(1 − λ) (1 − ε)λ 0 0 0

0 0 0 0 0 0 0 1
4

1
2

1
4

0 0 1
4

1
4

0 1
4

1
4

0 0 0

0 0 0 0 0 0 0 ε/2 1
2

(1 − ε)/2
1
4

1
2

0 0 1
4

0 0 0 0 0

0 0 ε/2 ε/2 0 (1 − ε)/2 (1 − ε)/2 0 0 0

0 0 0 0 0 0 0 ε2 2(1 − ε)ε (1 − ε)2


(A.1)

Pσ = lim
n→+∞;ε,λ→0

P ε defines the limit distribution with ε and λ approaching zero at the same

rate. If λ = ε each row vector of Pσ has components (0.5 0 0 0 0 0 0 0 0 0.5). Thus, both
equilibrium states occur with equal probability. If λ < ε state ( ll,ll) is SSS, if λ > ε state ( rr,rr) is
SSS.14

If we assume that equilibrium ( l,l) generates a larger pay-off than equilibrium ( r,r), all states,
except ( rr,rr), will converge to state ( ll,ll) in the unperturbed Markov process. Ceteris paribus,
the transition matrix looks as in matrix A.2

14e.g. if ε = 0.0001 and λ = ε1.5, the population remains in state ( ll,ll) almost all time (99%) and basically never
in state ( rr,rr) (< 1%).
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P ε =



(1 − λ)2 2(1 − λ)λ 0 0 λ2 0 0 0 0 0

0 0 (1 − λ)2 (1 − λ)λ 0 (1 − λ)λ λ2 0 0 0

(1 − λ)2 2(1 − λ)λ 0 0 λ2 0 0 0 0 0
0 0 ε(1 − λ) ελ 0 (1 − ε)(1 − λ) (1 − ε)λ 0 0 0

0 0 0 0 0 0 0 (1 − λ)2 2(1 − λ)λ λ2

0 0 (1 − λ)2 (1 − λ)λ 0 (1 − λ)λ λ2 0 0 0
0 0 0 0 0 0 0 ε(1 − λ) (1 − ε)(1 − λ) + ελ (1 − ε)λ

(1 − λ)2 2(1 − λ)λ 0 0 λ2 0 0 0 0 0
0 0 ε(1 − λ) ελ 0 (1 − ε)(1 − λ) (1 − ε)λ 0 0 0

0 0 0 0 0 0 0 ε2 2(1 − ε)ε (1 − ε)2


(A.2)

Since state (rr,rr) has no basin of attraction for m = 2, we cannot calculate the resistances for
various pay-offs. Yet, a change in the relative error size can still shift the SSS. For lim

n→+∞
P
′ε,λ,

ε = 0.00001 and ε
1
5 = λ each row vector is defined by approximately

(0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.96). We observe that though state (ll,ll) is risk
dominant, the players will spend approximately 96% of the time in state (rr,rr).15

Proof of Proposition (1). (This proof is with the exception of minor changes identical to the
one of Young, 1998, Theorem 4.1) Let G be a 2 × 2 coordination game with the corresponding
conventions (pure Nash equilibria) hA = (A,A) and hB = (B,B). Let Bi, with i = A,B represent
the equilibria’s basins of attraction. In addition, let the pay-offs of the game be symmetric. Assume
that sample size is dependent on the pay-offs at the current convention. Hence, as long as the
population is inside the basin of attraction of convention hA, players sample at a size s(A), in
the case they are in BB , sample size is s(B). Further, let the memory m be sufficiently large
(s(ω) ≤ m/2). Let rAB denote the reduced resistance for every path on the z-tree from hA to hB
as a function of the sample size s(A). Since after entering BB the system converges to hB without
further errors, rAB is the same as the reduced resistance for all paths from hA to BB . Let α be
defined as above and suppose that the population is in hA for a sufficiently large time, so that all
players have chosen strategy A for m periods in succession. For a player to choose strategy B and
for the system to enter BB there must be at least αs(A) times strategy B in the player’s sample.
This can only happen with positive probability if αs(A) players successively commit the error of
choosing action B. The probability of this to occur is at least εαs(A). The same logic holds for
convention hB , only that (1−α)s(B) players successively have to make the mistake. This event then
happens with order ε(1−α)s(B). It follows that the resistance from hA to hB is thus rsAB = αs(A)
and from hB to hA is rsBA = (1− α)s(B). hA is stochastically stable iff rsAB ≥ rsBA.

Proof of Proposition (2). Assume the same conditions as before except that row players have
sample size s1(A) near hA and s1(B) near hB , and the column players have sample size s2(A) and
s2(B) respectively and pay-offs are not necessarily symmetric (i.e. interaction pairs are given by
one row and one column player). Keep in mind that α refers to the share of column players and
β the share of row players. Hence, a row player 1 currently playing strategy x1 = A will only
change strategy if there is a sufficient number of column players playing x2 = B in his sample. For
a positive probability of this to happen there must be at least αs1(A) players committing an error

15Notice that, however, in this example the SSS will ultimately switch to (ll,ll) as ε→ 0, since (rr,rr) has no basin
of attraction. A larger memory of 3 would require a transition matrix of size 36× 36
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in subsequent periods, occurring with probability εαs1(A). For a column player 2 with x2 = A to
switch there must be a sufficient number of row players playing x1 = B in his sample. Hence, there
must be again at least βs2(A) of these players in m, happening with probability of at least εβs2(A).
The same reasoning holds for the transition from hB to hA. Hence, rsAB = αs1(A) ∧ βs2(A) and
rsBA = (1− α)s1(B) ∧ (1− β)s2(B).

Proof of Proposition (3). Now suppose that the rate of mutation is ε(A) = εγ(A) in BA and
ε(B) = εγ(B) in BB and that pay-offs are symmetric. Assume that sample size is constant and
normalised at s(A), s(B) = 1, thus is state and pay-off independent. Other conditions are equal to
the first proof. Starting in hA for a system to enter BB with positive probability, again a share of α
players successively has to commit the error of choosing action B. For a player to change strategy
from A to B there must be thus at least αs players playing strategy B in m, in order to sample a
share of α B players with positive probability. By the same logic as above this event occurs with
probability εγ(A)α. Congruently, a switch from hB to hA happens with probability εγ(B)(1−α). The
resistance from hA to hB is thus rγAB = γ(A)α and from hB to hA is rγBA = γ(B)(1− α).

Proof of Proposition (4). As in the second proof suppose that pay-offs are not necessarily
symmetric and that there exist two inter-acting types of players with state dependent error size
εi(ω). Row players have error size εγ1(A) = ε1(A) near hA and εγ1(B) = ε1(B) near h2, and column
players have error size εγ2(A) = ε2(A) and εγ2(B) = ε2(B) respectively. For convenience assume
that sample rate is normalised to s(A), s(B) = 1. A row player 1 currently playing strategy A
will only change his strategy if there is a sufficient number of column players playing B, i.e. if
he encounters a proportion of at least α column players choosing strategy B in his sampled set.
For this event to happen with positive probability, there must be s1(A)α of this column players in
m. For a normalised sample size s1,2 = 1 this happens with a probability of ε2(A)α = εαγ2(A). A
column player has to meet a portion of β row players erroneously playing strategy B. Hence, there
must be at least βs2 such players in m, which occurs with probability ε1(A)β = εβγ1(A). For hB
the argument is analogous. Thus rγAB = γ2(A)α ∧ γ1(A)β and rγBA = γ2(B)(1− α)∧ γ1(B)(1− β).

If we define the state dependent sample size as in the proof of proposition 3 and error size as
in proposition 4, it follows that in the case of both state dependent error and sample size the least
resistances are given by equation 10 on page 8.

Proof of Proposition (5). Assume condition 4 on page 6 holds, again defined as:

(A.3)li(ω) < lj(ω
′)⇔ εi(ω) > εj(ω

′)⇔ si(ω) < sj(ω
′)

⇔ γi(ω) < γj(ω
′), for i, j = 1, 2.

Assume the general case of 2 × 2 conflict-coordination games, with the asymmetric pay-off
structure as in matrix A.4.

( A B

A a11, b11 a12, b12

B a21, b21 a22, b22

)
⇒

( A B

A a, b 0, 0

B 0, 0 c, d

)
(A.4)

The first pay-off matrix is equivalent to the second by transformation, given that a = a11− a21,
b = b11 − b12, c = a22 − a12 and d = b22 − b21. The definition in the right matrix will be used in
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the following, as the transformation will not affect the loss size and thus results, but will simplify
notation. For this pay-off matrix the frequencies are given by α = a

a+c , and β = b
b+d . Define

a positive, continuous and strictly increasing function µ and η, such that si(ω) = µ(li(ω)), and
γi(ω) = η(li(ω)). If for both player types the same equilibrium risk dominates, the solution is
trivial. For a > c and b > d, it always holds that
min {αs1(A);βs2(A)} > min {(1− α)s1(B); (1− β)s2(B)} and also
min {αγ2(A);βγ1(A)} > min {(1− α)γ2(B); (1− β)γ1(B)}. Hence, hA is SSS. The inverse holds
for a < c and b < d.

For a > c and d > b we obtain α > 1 − α and 1 − β > β. Hence, α > β and 1 − β > 1 − α.
Consequently, there are two possibilities. Either β > 1− α (hA is SSS ) or β < 1− α (hB is SSS ).

State dependent sample rate: Define as before that si(ω) = µ(li(ω). Then by assumption
µ(a)α > µ(c)(1− α) and µ(b)β < µ(d)(1− β). Under these conditions four cases can occur:
1. case: If µ(a)α < µ(b)β, then c < a < b < d and thus, µ(c)(1−α) < µ(d)(1− β). In this case hA
is SSS.
2. case: If µ(c)(1− α) > µ(d)(1− β),then b < d < c < a and thus, µ(a)α > µ(b)β. In this case hB
is SSS.
Hence, the results for the state dependent sample size do not necessarily coincide with the state
independent case.
3. case: The indeterminate case occurs, if µ(a)α > µ(b)β and µ(c)(1−α) < µ(d)(1−β). Depending
on the relative size of b and c and the order of µ(li(ω) the state dependent solution will differ from
the original approach.
4. case: A contradiction occurs, if µ(a)α < µ(b)β and µ(c)(1 − α) > µ(d)(1 − β). The case
contradicts with the assumption that a > c and d > b.

As a result only if µ(a)α < µ(b)β and β > 1−α, and if µ(c)(1−α) > µ(d)(1−β) and β < 1−α,
the state dependent and independent results coincide.

In the case of state dependent error rate: As before define η(li(ω)) = γi(ω). The reduced resist-
ances are then given by rγAB = η(b) a

a+c ∧ η(a) b
b+d and rγBA = η(d) c

a+c ∧ η(c) d
b+d . Without further

assumptions on η(li(ω)) no definite results can be obtained.

Assume that both µ̂(li(ω)) and η̂(li(ω)) are defined as such that they are not subject to any
positive affine transformation, thus s1(A) = µ̂(α) and γ1(A) = η̂(α), and define the remaining
sample and error rates equivalently. This implies that a player only regards his potential loss in
relative terms and not in absolute pay-offs. For the state dependent sample size the resistances are
rsAB = µ̂(α) α ∧ µ̂(β) β and rsBA = µ̂(1 − α) (1 − α) ∧ µ̂(1 − β) (1 − β). For 1 − α < β, it follows
that hA is SSS ; for 1− α > β, it is obtained that hB is SSS.

For the state dependent error size the resistances are thus rγAB = η̂(β) α∧η̂(α) β and rγBA = η̂(1−
β) (1−α)∧ η̂(1−α) (1−β). Hence, for 1−α < β and given the former assumptions, it must be that
α > 1− β > β > 1− α and thus min {η̂(β) α; η̂(α) β} > min {η̂(1− β) (1− α); η̂(1− α) (1− β)}.
As a consequence, it follows that hA is SSS. In the same way, if 1 − α > β it must hold that
rγAB < rγBA and hB is SSS.

Given that pay-offs are symmetric entails that a = b and c = d. Without loss of generality,
assume that a > c and thus b > d. Since, α = β > 1− α = 1− β is follows that hA = SSS. In the
case of state dependent sample size we obtain µ(a) α = µ(b) β > µ(c) (1−α) = µ(d) (1−β), and
hA = SSS. In the case of state dependent error size, it holds that η(b) α = η(a) β > η(d) (1−α) =
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η(c) (1− β), and hA = SSS.
If pay-offs are double symmetric, then a = d and = c. Without loss of generality, assume that

a > c, thus d > b, leading to α = 1−β > 1−α = β, and hence both equilibria are SSS. In the case
of state dependent sample size it holds that µ(a)α = µ(d) (1−β) > µ(c) (1−α) = µ(b) β, and both
are SSS. In the case of state dependent error size η(b) α = η(c) (1− β) > η(d) (1− α) = η(a) β,
and both are SSS.

Given a 2× 2 conflict games, with a mirror-symmetric pay-off structure as in matrixA.5:

( A B

A a, d b, c

B c, b d, a

)
(A.5)

Assume without loss of generality that a > d > b, c, then rAB = β and rBA = (1 − α).
Equilibrium (A,A) will be the SSS, iff d − c > d − b, hence iff c < b. Assume further that this is
the case, then l1(A) = a − c, l2(A) = d − c, l1(B) = d − b, l2(B) = a − b. For the state dependent
error size s1(A) > s2(A) > s1(B) and s1(A) > s2(B), since A.3 holds. Hence rAB = µ(d− c)(d−c(.) )

and rBA = µ(d− b)(d−b(.) ), where (.) = (a− b− c+ d). Since d− c > d− b, equilibrium (A,A) will

be SSS. The same argument holds for c > b, in which case hB is SSS.
In the case of state dependent error size and for assumption c < b, we obtain γ1(A) > γ2(A) >

γ1(B) and γ1(A) > γ2(B), and thus rγAB = η(d− c)(a−c(.) )∧η(a− c)(d−c(.) ) and rγBA = η(a− b)(d−b(.) )∧
η(d− b)(a−b(.) ). Hence, if c < b it must hold that

min
{
η(d− c)(a−c(.) ); η(a− c)(d−c(.) )

}
> min

{
η(a− b)(d−b(.) ) ∧ η(d− b)(a−b(.) )

}
and hA is the SSS. By

the same reasoning, for c > b it holds that rγAB < rγBA and thus hB is the SSS.

Consequently, in the case losses are considered relative and are independent of a positive pay-off
transformation that does not change the game structure, state dependence confirms the results
obtain in the standard approach. This is not necessarily the case for any function of the sample
and error size, if pay-offs show no form of symmetry.

Example: A short example will illustrate these results. Suppose the following pay-off matrix:

( A B

A 16, 6 0, 0
B 0, 0 10, 8

)
(A.6)

Hence, α = 8
13 , (1− α) = 5

13 , β = 3
7 , and 1− β = 4

7 . As a result it holds, that hA = SSS. For the
general case we obtain rsAB = µ(6) 3

7 and for hA to be SSS under the assumption of state dependent
sample size it must hold that µ(6) 3

7 > µ(10) 5
13 (and thus also that µ(10) 5

13 < µ(8) 4
7 ), which is

not the case for all functional forms of µ(.).16

For the state dependent error size it holds rγBA = η(8) 5
13 . Hence, this must be strictly smaller

than min
{
η(6) 8

13 , η(16) 3
7

}
, which again is not fulfilled for all functional forms of η(.).

If we restrict the form of µ(.) and η(.) to the assumptions above, we obtain:
rs
′

AB = min
{
µ̂( 8

13 ) 8
13 , µ̂( 3

7 ) 3
7

}
and rs

′

BA = min
{
µ̂( 5

13 ) 5
13 , µ̂( 4

7 ) 4
7

}
. Thus, rs

′

AB > rs
′

BA. Further

16Notice that b < d < c < a is not a sufficient condition for SSS = hB , see case 2. above.
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rγ
′

AB = min
{
η̂( 3

7 ) 8
13 , η̂( 8

13 ) 3
7

}
> rγ

′

BA = min
{
η̂( 4

7 ) 5
13 , η̂( 5

13 ) 4
7

}
, rγ

′

AB > rγ
′

BA. Consequently, in
the constrained case, hA = SSS both for state dependent sample and error size.

Proof of Proposition (6). Given a normalised double-mirror symmetric game with two Nash
equilibria

( A B

A a,b 0,0

B 0,0 b,a

)
(A.7)

In this case the frequencies are as such that α = 1−β and 1−α = β. Hence in rAB = rBA and each
equilibrium is SSS in the state independent case. Assume without loss of generality that player
type 1 (row player) is less risk averse than player type 2 (column player) and that he has a higher
surplus in hA than in hB and the inverse for type 2, i.e. a > b. Since player 1 is less risk averse, it
can either be expected that s1(ω) < s2(ω′), or γ1(ω) < γ2(ω′), where ω and ω′ indicate state hA or
hB . Further, we know that α > (1− α).

In the case of state dependent sample size the resistances are rewritten as: rsAB = α s1(A)∧(1−
α) s2(A) and rsBA = (1−α) s1(B)∧α s2(B). It must hold that s1(A) > s1(B) and s2(B) > s2(A),
but also that s1(A) < s2(B) and s1(B) < s2(A). Hence, rsBA = (1−α) s1(B) < rsAB . Consequently,
hA is SSS. Hence, the less risk averse player type 1 can gain a higher surplus.

For the case of state dependent error size, define two positive and strictly increasing functions u
and v as such that u(.) > v(.), u(0), v(0) = 0 (from pay-off function 2 on page 2) and u′(.), v′(.) > 0.
Let γ1(ω) = v(l1(ω)) and γ2(ω) = u(l2(ω)), and hence, γ1(A) = v(a), γ1(B) = v(b), and γ2(A) =
u(b), γ2(B) = u(a). The resistances are rγAB = αu(b)∧ (1− α)v(a) and rγBA = (1− α)u(a)∧ αv(b).

Four possible outcomes can occur -
1. case: rγAB = αu(b) and rγBA = αv(b). From the minimum conditions of the resistances it must

be that a
b <

v(a)
u(b) <

u(a)
v(b) . It must further hold that u(.) and v(.) are convex in pay-offs a and b. As

u(.) > v(.), hA = SSS.

2. case: rγAB = αu(b) and rγBA = (1 − α)u(a). In this case it must hold u(a)
v(b) <

a
b <

v(a)
u(b) . This

contradicts the assumptions that u(.) > v(.).

3. case: rγAB = (1− α)v(a) and rγBA = αv(b). Thus, u(a)
v(b) >

a
b >

v(a)
u(b) . Since u(.) > v(.), no further

restrictions on the functions’ slope can be derived. For hA = SSS only if a
b <

v(a)
v(b) , which holds in

the case v(.) is a strictly convex function. If the function is strictly concave hB = SSS.
4. case: rγAB = (1 − α)v(a) and rγBA = (1 − α)u(a). For this inequality to occur, it must be

that a
b >

u(a)
v(b) >

v(a)
u(b) . It must further hold that u(.) and v(.) are concave in pay-offs a and b. As

u(.) > v(.), hB = SSS.
Hence, if u(.) and v(.) are strictly convex, then hA is SSS. If both functions are strictly concave,
then hB is SSS.
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AppendixB. The one-third rule

Assume as before a general 2 × 2 coordination game with two strict Nash equilibria in pure
strategies. For simplicity assume that pay-offs are symmetric as in matrix:17

( A B

A a,a b,c

B c,b d,d

)
(B.1)

Further assume that two players are randomly paired. Since none can observe a priori the
other player’s strategic choice, each asks s other players among the m players in his population
what strategy they have chosen in previous periods. (An alternative interpretation of adaptive
play is that the same player faces an identical choice m times during his life, but recalls only for s
incidences which strategies has been chosen by his counterparts.) Based on his sample, each chooses
the strategy for the current game.

The collective memory of the other players’ strategy choice (and his own) during m
2 past plays

is sufficiently described by a matrix of size m×m, since it resembles the following random Moran
process: After each interaction both players retain the memory of the other’s current play (altern-
atively they retain their own strategy), and two “old” memories from previous play are forgotten.
Yet, for simplicity this process can be approximated by a sequence in which one new memory is
born and added to the memory, an old is lost and deleted from the memory. Thereafter the new
memory of the second player is added and an old is forgotten. Hence, each play defines two periods
in the birth-death process.18

Furthermore the old memory, which “dies”, is not necessarily the oldest memory. It is in fact
supposed that any memory of previous play can be forgotten with equal probability 1

m . This
relaxation both simplifies the following analysis but also augments the degree of realism. The
original approach by Young is overly restrictive. A general assumption that the last element in the
collective memory dies, requires players to keep track of the precise order of events. Hence, in the
following it is assumed that the death of an element (or rather its omission) is not deterministically,
but stochastically defined.

In such a process two different events can occur in each period. Either a strategy in m substitutes
an element indicating a different strategy or the same strategy. Hence, the rate, at which a certain
strategy has been played in the memory of m players19 (or m

2 previous plays) can either decrease,
increase (each by one unit) or remain unchanged. Define i as the number of memories that strategy

17Here I will follow mainly the assumptions and proof of Nowak (2006), except for minor adaptations and extensions
to the given context.

18The reason for these simplifications is the following: If the process is determined by the sequence two births
and subsequently two deaths the transition of a state is not bounded to its immediate successor or predecessor (one
element more or one element less) but can directly transit to the second-order successor or predecessor (two elements
more or two elements less), resulting in 4 state dependent transition probabilities instead of two, which tremendously
complicates the following derivation. The reason for the strict pay-off symmetry is that it allows to neglect types.
In the general case it is required to define two Moran processes. We then obtain two interdependent systems of
equations not easily solvable in closed form. Yet, I believe the illustrative purpose of this section is not upset by
these additional assumptions as the intention is to illuminate the general dynamics of the process in the case of a
high level of idiosyncratic play.

19Assuming that players are only drawn once. Hence, more correctly it is m memories of some number of players.
If a player had been drawn twice he retains two memories.
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T =


1 0 0 · · · 0 0 0
p1,0 1− p1,0 − p1,2 p1,2 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . pm−1,m−2 1− pm−1,m−2 − pm−1,m pm−1,m
0 0 0 . . . 0 0 1

 (B.2)

A has been played, i.e. i is equal to the frequency with which strategy A occurs in the history of
past plays. Consequently, the probability that an element defining strategy A is forgotten is equal
to i

m , and similarly for the strategy B, this probability equals m−i
m . (One might also interpret this

assumption as more unique events being less likely to be forgotten.)
Given the underlying transition probabilities pi,i+1 and pi,i−1 to move from state i to i+1 and

i-1 respectively, the Markov process is defined by a three-diagonal transition matrix of the form of
matrix B.2.

Hence, i=0 (corresponding to state hB) and i=m (corresponding to state hA) are absorbing
states. The fixation probability ρx defines the probability that an individual strategy x, mutant to
the current convention of m−1 states that are only defined by strategy x′, can sufficiently proliferate
to finally reach the absorbing state, in which all individuals played strategy x in memory m, i.e.
the probability of switching conventions. Following Nowak (2006) we obtain:

(B.3a)ρA =
1

1 +
∑m−1
j=1

∏j
k=1(

pk,k−1

pk,k+1
)

(B.3b)ρB =

∏m−1
k=1 (

pk,k−1

pk,k+1
)

1 +
∑m−1
j=1

∏j
k=1(

pk,k−1

pk,k+1
)

Now assume that an individual calculates his pay-off according to matrix B.1 on page 21 and
memory size m. If he were capable to draw an unbiased sample from the entire memory, i.e.
distribution(s) = distribution(m), and if he expects this to be a representative account of the
strategy distribution in the entire population for the coming period, the expected pay-off is simply
defined by the relative frequencies of both strategies. Consequently, he expects that the population
consists of i individuals playing A and m−i individuals playing B. Define Πx(i) as the expected pay-
off that an individual receives, when playing strategy x in such a population, where the frequency
of strategy A is defined by i.20. The expected pay-offs for each strategy are then given by

(B.4a)ΠA(i) =
a(i− 1) + b(m− i)

m− 1

(B.4b)ΠB(i) =
ci+ d(m− 1− i)

m− 1

Adaptive play assumes that sample size is smaller than memory size (m ≥ 2s) and, thus,
distributions do not necessarily coincide. This can also be represented by a new element in m,

20Keep in mind that there are m− 1 other individuals and i− 1 strategy A players and m− i strategy B players
for an individual playing A and similarly for an individual playing B.
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which is not deterministically defined solely by equations B.4, but by a stochastic process. An error
occurs, when a player draws a skewed sample or idiosyncratically chooses an action at random. The
higher the relative expected pay-off of the best response strategy, the more likely this strategy will
define the new element in m. This is simply equivalent to inducing an individual to play a non-best
response strategy requires a larger share of adverse states (i.e. of non-best strategies) in sample s
than the share defined by the unstable interior equilibrium. In other words, the sample needs to be
sufficiently skewed, which happens with decreasing probability as the collective memory includes
a larger share of states to which the strategy is a non-best response. Since all elements in m are
sampled with equal probability, the likelihood of a sufficiently skewed sample will decrease as the
relative expected pay-off of the best-response strategy increases in the current state.

Adaptive play thus supposes that with a certain probability ε > 0 individuals choose a response
strategy at random, i.e. they experiment. With probability ε(li(ω

p)) the process does not behave
according to the relative expected pay-offs defined in B.4, but completely random. In order to
weight the intensity of strategic selection, based on expected pay-offs, and the random choice, write
the pay-off functions as

(B.5a)πA = ε+ (1− ε)ΠA(i)

(B.5b)πB = ε+ (1− ε)ΠB(i)

with ε ∈ (0, 1). Strong selection is thus defined by ε→ 0, which is the case underlying the intuition
of Kandori, Mailath and Rob, and Young. Weak selection occurs in the case of a high error rate
ε → 1, if li(ω

p) → 0. These assumptions allow to define the transition probabilities of the Moran
process described in B.2. The probability that a new element in the collective memory defines
either strategy A or strategy B is

iπA
iπA + (m− i)πB

or
(m− i)πB

iπA + (m− i)πB
.

Consequently,

(B.6a)pi,i+1 =
iπA

iπA + (m− i)πB
m− i
m

(B.6b)pi,i−1 =
(m− i)πB

iπA + (m− i)πB
i

m

For the neutral case of ε = 1, in which selection favours neither A nor B, we obtain a completely
random process, such that fixation probability is defined as ρx = 1

m .21 This is intuitive, since each
value in the matrix describing the Moran process, has the same probability to spread over the entire
memory. Setting equations B.5a and B.5b into equation B.3a, we obtain

ρA =
1

1 +
∑m−1
j=1

∏j
k=1(πBπA )

(B.7)

Based on Nowak (2006), the Taylor expansion for ε→ 1 (or (1− ε→ 0) gives

(B.8)ρA =
1

m

1

1− (γm− δ)(1− ε)/6
, with

γ = a+ 2b− c− 2d and δ = 2a+ b+ c− 4d

21Remember that here pi,i−1 = pi,i+1.
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In order for selection to favour strategy A, its fixation probability must be greater than in the
neutral case, i.e. ρA >

1
m and it must be that γm > δ. Hence,

a(m− 2) + b(2m− 1) > c(m+ 1) + d(2m− 4) (B.9)

If the memory size m is sufficiently large, we obtain

a− c > 2(d− b) (B.10)

Setting the pay-offs from B.4 or B.5 equal, we obtain for a large memory size that the unstable
interior equilibrium is defined by a frequency of α = a−c

a−c−b+d players choosing strategy B, defining
the basins of attraction for both strict Nash equilibria. By putting in the results of the previous
equation B.10, we obtain

α > 2/3 (B.11)

Thus, in order for equilibrium (A,A) to be a SSS, the minimum frequency of idiosyncratic
players choosing strategy A to cause a switch of best-response players to this strategy, and thus the
reduced resistance to (A,A), is defined by rBA = 1 − α, and has to be less than one third in the
context of weak selection and high error rate. Redefining yields the same result with respect to the
resistance of (B,B), i.e. rAB < 1/3, whence proposition 7.
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jeux évolutionnistes stochastiques. Revue économique 47 (3), pp. 589–600.
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