2003/14 LEM Working Paper Series

Issues Concerning the Approximation Underlying theSpectral Representation Theorem

Marco Lippi
Stochastic processes. Stationarity. Spectral analysis.


In many important textbooks the formal statement of the Spectral RepresentationTheorem is followed by a process version, usually informal, stating thatany stationary stochastic process g is the limit in quadratic mean of asequence of processes, each consisting of a finite sum of harmonicoscillations with stochastic weights. The natural issues, whether the approximationerror is stationary, or whether at least it converges to zero uniformly int , have not been explicitly addressed in the literature. The paper shows that in allrelevant cases, for T unbounded the process convergence is not uniform in t. Equivalently, when T is unbounded the numberof harmonic oscillations necessary to approximate a stationary stochastic process with a preassigned accuracydepends on t . The conclusion is that the process version of the Spectral RepresentationTheorem should explicitely mention that in general the approximation of a stationary stochastic processby a finite sum of harmonic oscillations, given the accuracy, is valid for t belongingto a bounded subset of the real axis (of the set of integers in the discrete-parametercase).

download pdf