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Abstract

In this paper we introduce a new nonparametric test for Granger non-causality which avoids
the over-rejection observed in the frequently used test proposed by Hiemstra and Jones (1994).
After illustrating the problem by showing that rejection probabilities under the null hypothesis
may tend to one as the sample size increases, we study the reason behind this phenomenon ana-
lytically. It turns out that the Hiemstra-Jones test for the null of Granger non-causality, which can
be rephrased in terms of conditional independence of two veéfored Z given a third vector
Y, is sensitive to variations in the conditional distributionsXofind Z that may be present under
the null. To overcome this problem we replace the global test statistic by an average of local
conditional dependence measures. By letting the bandwidth tend to zero at appropriate rates, the
variations in the conditional distributions are accounted for automatically. Based on asymptotic
theory we formulate practical guidelines for choosing the bandwidth depending on the sample
size. We conclude with an application to historical returns and trading volumes of the Standard
and Poor’s index which indicates that the evidence for volume Granger-causing returns is weaker

than suggested by the Hiemstra-Jones test.
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1 Introduction

Granger (1969) causality has turned out to be a useful notion for characterizing dependence relations
between time series in economics and econometrics. Intuitively, for a strictly stationary bivariate
procesy (X, Y;)}, {X:} is a Granger cause ¢t } if past and current values of contain additional
information on future values d&f that is not contained in past and curréntalues alone. If we denote

the information contained in past observatiohsandYs, s < ¢, by Fx ; andFy,, respectively, and

let ‘~' denote equivalence in distribution, the formal definition is:

Definition 1 For a strictly stationary bivariate time series proce§&X;,Y;)}, t € Z, {X:} is a

Granger cause ofY; } if, for somek > 1,

(Yigt, - Yo [(Fxs Frg) 4 Ve, - - Yeqn) [ Fre

Since this definition is general and does not involve any modelling assumptions, such as a linear
autoregressive model, it is often referred to as general or, by a slight abuse of language, nonlinear
Granger causality.

Traditional parametric tests for Granger non-causality within linear autoregressive model classes
have reached a mature status, and have become part of the standard toolbox of economists. The recent
literature, due to the availability of ever cheaper computational power, has shown an increasing interest
in nonparametric versions of the Granger non-causality hypothesis against general (linear as well as
nonlinear) Granger causality. Among the various nonparametric tests for the Granger non-causality
hypothesis, the Hiemstra and Jones (1994) test (hereafter HJ test) is the most frequently used among
practitioners in economics and finance. Although alternative tests, such as that proposedédy Bell
al. (1996), and by Su and White (2003), may also be applied in economics and finance, we limit
ourselves to a discussion of the HJ test and our proposed modification of it.

The reason for considering the HJ test here in detail is our earlier finding (Diks and Panchenko,
2005) that this commonly used test can severely over-reject if the null hypothesis is true. The aim
of the present paper is two-fold. First, we derive the exact conditions under which the HJ test over-
rejects, and secondly we propose a new test statistic which does not suffer from this serious limitation.
We will show that the reason for over-rejection of the HJ test is that the test statistic, due to its
global nature, ignores the possible variation in conditional distributions that may be present under the

null hypothesis. Our new test statistic, provided that the bandwidth tends to zero at an appropriate



rate, automatically takes into account such variation under the null hypothesis while obtaining an
asymptotically correct size.

The practical implication of our findings is far-reaching: all cases for which evidence for Granger
causality was reported based on the HJ test may be caused by the tendency of the HJ test to over-reject.
Reports of such evidence are numerous in the economics and finance literature. For instance, Brooks
(1998) finds evidence for Granger causality between volume and volatility on the New York Stock
Exchange, Abhyankar (1998) and Silvapulla and Moosa (1999) in futures markets, and Ma and Kanas
(2000) in exchange rates. Further evidence for causality is reported in stock markets (Ciner, 2001),
among real estate prices and stock markets (Okehey, 2000, 2002) and between London Metal
Exchange cash prices and some of its possible predictors (Chen and Lin, 2004). Although we do not
claim that the reported Granger causality is absent in all these cases, we do state that the statistical
justification is not warranted.

This paper is organized as follows. In section 2 we show that the HJ test statistic can give rise
to rejection probabilities that tend to one with increasing sample size under the null hypothesis. In
section 3 the reason behind this phenomenon is studied analytically and found to be related to a
bias in the test statistic due to variations in conditional distributions. The analytic results suggest
an alternative test statistic, described in Section 4, which automatically takes these variations into
account, and can be shown to give asymptotic rejection rates equal to the nominal size for bandwidths
tending to zero at appropriate rates. The theory is confirmed by the simulation results presented at the
end of the section. In Section 5 we consider an application to S&P500 volumes and returns for which
the HJ test indicates volume Granger-causing returns, while our test indicates that the evidence for

volume causing returns is considerably weaker. Section 6 summarizes and concludes.

2 The Hiemstra-Jones Test

In testing for Granger non-causality, the aim is to detect evidence against the null hypothesis
Hy: {X:} is not Granger causinfy;},

with Granger causality defined according to Definition 1. We limit ourselves to tests for detecting
Granger causality fok = 1, which is the case considered most often in practice. Under the null
hypothesis’; 1 is conditionally independent of;, X;_1, ..., givenY;, Y;_1,.... In a nonparametric

setting, conditioning on the infinite past is impossible without a model restriction, such as an assump-
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tion that the order of the process is finite. Therefore, in practice conditional independence is tested
using finite lagd x andiy:

Vet [(XP5 YY) ~ Yo V)Y,

where XX = (X;_;11,...,X;) andY;” = (Y,_j,41,...,Y;). For a strictly stationary bivariate
time serie§ (X, Y;)} this is a statement about the invariant distribution ofithe-ly- 4 1-dimensional
vectorW; = (XfX,YtlY, Z:), whereZ, = Y;41. To keep the notation compact, and to bring about
the fact that the null hypothesis is a statement about the invariant distributidf, afle often drop
the time index and just writ®d/ = (X,Y, Z), where the latter is a random vector with the invariant
distribution of(thXJ/tlY,YtH). In this paper we only consider the choigge = [y = 1, in which
caselW = (X,Y,Z) denotes a three-variate random variable, distributetas= (X, Y:, Yi4+1).
Throughout we will assume thdlt’ is a continuous random variable.

The HJ test is a modified version of the Baek and Brock (1992) test for conditional independence,
with critical values based on asymptotic theory. To motivate the test statistic it is convenient to restate
the null hypothesis in terms of ratios of joint distributions. Under the null the conditional distribution
of Z given (X,Y) = (z,y) is the same as that ¢f givenY = y only, so that the joint probability
density functionfx y,z(x, y, z) and its marginals must satisfy

fxyz(,y,2) _ frz(y,2)
fxy(z,y) fr(y)

(1a)

or equivalently

fX7y7z(£L‘,y,Z) _ fX,Y(‘T?y) fY,Z(y’ Z) (1b)
fy(y) ) fr(y)

for each vectofz, y, z) in the support of X, Y, Z). The last equation is identical . ;v (=, z|y) =
Ixy (xly) f21y (2]y), which explicitly states thak” and Z are independent conditionally dn = y,
for each fixed value of.
The Hiemstra-Jones test employs ratios of correlation integrals to measure the discrepancy be-
tween the left- and right-hand-sides of (1a). For a multivariate random vEdmking values irR%v
the associated correlation integ€@) (¢) is the probability of finding two independent realisations of

the vector at a distance smaller than or equat to
Cv(e) = P[|Vi—Vaf <€, Vi, Vaindep.~ V
= [ [ s = sall < o) (s2) dsads
wherel (||s; —s2|| < ) is the indicator function, which is one|jf; —s2|| < ¢ and zero otherwise, and

llz|| = sup;—;__4, |7i| denotes the supremum norm. Hiemstra and Jones (1994) argue that Equation
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(1a) implies for any > 0:
Cxy,z(€) _ Cy,z(¢)
C)Qy(s) Cy(€)

(2a)

or equivalently
Cx,y,z(¢) _ Cxy(e) Cy,z(e)
Cy(E) Cy(&) Cy(&") '

The HJ test consists of calculating sample versions of the correlation integrals in (2a), and then testing

(2b)

whether the left-hand- and right-hand-side ratios differ significantly or not. The estimators for each

of the correlation integrals take the form

Cwn(e) = n(f_l)zzfﬁ

i<j
whereIi‘;V = I(||W; — W;|| < ¢). For the asymptotic theory we refer to Hiemstra and Jones (1994).

As stated in the introduction, the main motivation for the present paper is that in certain situations
the HJ test rejects too often under the null, and we wish to formulate an alternative procedure to
avoid this. Before investigating the reasons for over-rejection analytically, we use a simple example
to illustrate the over-rejection numerically, and to show that simple remedies such as transforming
the data to uniform marginals and filtering out GARCH structure do not work. Diks and Panchenko
(2005) demonstrated that for a process with instantaneous dependence in conditional variance the
actual size of the HJ test was severely distorted. Here we illustrate the same point for the similar

process, but without instantaneous dependence:

X, ~ N(0,c+a¥2)))

(3)
Y; ~ N(0,c+aY?2,)).

This process satisfies the null hypothesi;} is not Granger causingY;}. The values for the
coefficientsa andc are chosen in such a way that the process remains stationary and ergodic (
0<a<l).

We performed some Monte Carlo simulations to obtain the empirical size of the HJ test for the
ARCH process (3) with coefficients= 1, a = 0.4. For various sample sizes, we generated 1 000
independent realisations of the bivariate process and determined the observed fraction of rejections
of the null at a nominal size d@f.05. The solid line in Figure 1 shows the rejection rates found as a
function of the time series length The simulated data were normalized to unit variance before the
test was applied, and the bandwidth was set te 1, which is within the common rangé.5, 1.5)

used in practice. For time series length< 500 the test based on the original series under-rejects.
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Figure 1: Observed rejection rates (empirical size, number of realisations: 1 000) of the HJ test (¢ = 1) for the
bivariate ARCH process (3) as a function of the time series length n (nominal size 0.05) for: original data (solid
line), uniformly transformed data (long-dashed line), ARCH filtered data (dashed line) and for data generated
with model (4) and filtered with a misspecified ARCH(1) model (dotted line).

Its size is close to nominal for series length= 500. For longer series the actual size increases and
becomes close to one when= 60 000. The reason that the observed size increases with the series
lengthn is that, as detailed in the next section, the test statistic is biased in that it does not converge in
probability to zero under the null as the sample size increases. As the sample size increases the biases
converges to a nonzero limit while the variance decreases to zero, giving rise to apparently significant
values of the test statistic. In comparison with the process with instantaneous dependence considered
in Diks and Panchenko (2005) the current process indicates less size distortion. This is due to the
weaker covariance between the concentration meagiixeand H ; for the current process, which is

the main cause of the bias.

As suggested by Pompe (1993) in the context of testing for serial independence, transforming the
time series to a uniform marginal distribution by using ranks, may improve the performance of the
test. Here we investigate if it reduces the bias of the HJ test. The long-dashed line in Fig. 1 shows that
the uniform transform improves the size for time series of lemgth 1 000, but magnifies the size

distortion for time series length > 2 000.



As another solution one might argue that it is possible to filter out the conditional heteroskedastic-
ity using a univariate (G)ARCH specification. This would remove the bias caused by the conditional
heteroskedasticity in the HJ test. However such a filtering procedure has several drawbacks. First, it
may affect the dependence structure and consequently the power of the test. Second, a (G)ARCH filter
may not fully remove the conditional heteroskedasticity in the residuals. To illustrate the latter point
we filtered the original series considered before by univariate ARCH(1) model. The parameters of the
model were estimated for every realisation using the asymptotically efficient two stage procedure of
Engle (1982). Figure 1 (dashed line) shows that the filtering removes the bias for time series length
n < 30 000, however the actual size remains distorted for longer series.

It is important to mention that in the previous case the correct model for the conditional variance
of seriesY; was used and, as the next section clarifies, most of the source of the bias was removed. In
practice the correct model is not known and the model used to filter out the heteroskedasticity is likely
to be misspecified. To show the effect of model misspecification we generated data according to the

following “exotic” ARCH model:

X; ~ N(0,c+aY2, exp(—bY2 )

(4)
Y; ~ N(0,c+aY?exp(—bY72,))).

With parameters: = 1, a = 2 andb = 0.4 the process (4) is stationary and the fluctuations in

the conditional variance are similar in magnitude as for the ARCH process (3) with the coefficients
considered before. Instead of using a correctly specified filter we proceeded as before, calculating the
size using a conventional ARCH(1) filter prior to application of the HJ test. The results represented
by the dotted line in Fig. 1 indicate that the misspecified ARCH(1) filter is not able to remove large
part of the source of bias and the sensitivity of the HJ test to dependence in the conditional variance

leads to over-rejection, even for shorter time series.

3 Bias from correlations in conditional concentrations

In this section we show that the reason that the HJ test is inconsistent is that the assumption made by
HJ that (1a) implies (2a) does not hold in general. In fact (2a) follows from (1a) only in specific cases,

e.g. when the conditional distributions Bfand X givenY = y do not depend og. To see this, note



that under the null hypothesis

Pl Xy = Xof| <&, (21 = Z2|| <elY1 = Y2 =]

(5)
= P[|| X1 — Xof| <elY1 = Y2 = y|P[[|Z1 — Z2|| < elY1 =Ya =y,
whereas Equation (2b) states
Pll|[ X1 — Xof| <&, |21 = Zaf| < el[Y1 — Y2 < €] ©)

= Pl X1 = Xo| <ef1 = Yol <] P[[[ 21 = Zof| < el[[Y1 = Ya| <e].

In general these conditions are not equivalent. In both equations a statement regarding the factorization
of probabilities is made, but the events on which the conditioning takes place differ. In general,
under the null the conditional distributions &f and Z are allowed to depend ori. Therefore,

the distributions ofX; — X, and Z; — Z, will generally depend, under the null, dq and Ys.

Even for smallz the condition in Equation (6) holds for many close but very diffeléntY, pairs.
Therefore, for smalt the left-hand-side of Equation 6 behaves as an average of that of Equation (5)
over all possible values af. Because factorization of densities is not preserved under averaging —
afi(z)g1(z) + (1 — a) fa(x) f2(z) typically cannot be written as the product of a functionzoéind

of z — the average probability on the left-hand-side of Equation (6) will typically not factorize in the
form on the right-hand-side.

Although this argument shows that the relationship tested in the HJ test is generally inconsistent
with the null hypothesis, one might argue that the test could still be asymptotically valid if appropriate
measures are taken to eliminate the ‘bias’ in Eq. (2a) asymptotically, for example by allowing for the
bandwidthe to tend to zero at an appropriate rate with increasing sample size.

To see whether such an approach might work we examine the behavior of the fractions in (2a) for
small values of the bandwidth For continuous distributions the following smalapproximation is
useful:

Cr(e) = [ [ 105 =sall < sn)isn) dsy s
= // v(s2) ds2 fy(s1) ds1 + o(e™)
= (s1

= (2 dV/)fZ( )ds +o(e)
= (26)V Hy +o(e™),

(7)

whereB.(s;) denotes a ball (or, since we use the supremum norm, a hypercube) withsraditered
atsi. The constantly = [ f2(s)ds = E [fy(V)] can be considered asancentration measuref

V. To illustrate this, consider a family of univariate pdfs with scale parantetiat is, f (v; 0) =
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0~1g(0~'v) for some pdfy(-). One readily finds fZ(s;0)ds = 5 [ g*(s) ds = <% which shows

that, in the univariate case, the concentration measure is inversely proportional to the scale parameter
6. For later convenience, for a pair of vector-valued random variafe®’) of possibly different
dimensions, we also introduce thenditional concentratioof the random variabl®” givenY = y,
asHy(y) = [ f2y (vly) dv = ([ [2y(v.y) dv)/ f2 ().

By comparing the leading terms of the expansion in powetsiokquations (2b) and (7), we find

that
Elfxyz(X,Y,2)] _ Elfxy(X,Y)] Elfyz(Y, Z)]
Elfy(Y)] Elfy(Y)]  Elfy(Y)]

That is, fore small, testing the equivalence of the ratios in (2a) amounts to testing (8) instead of the

(8)

null hypothesis. Unless some additional conditions hold, this will typically not be equivalent to testing
the null hypothesis. To see what these additional conditions are it is useful to rewrite (8) as follows.

For the left-hand-side one can write

Elfxvz(X.Y.Z)] By [Exzylfxzy(X, Z|Y)f(Y)]
Elfy(Y)] a E[fy(Y)]
= /EXZY ylfx,z1v (X, Z|y)|w(y) dy

= /HXZ y) dy,

wherew(y) is a weight function given byu(y) = fZ(y)/ | fZ(s)ds. This brings about the fact

that the ratio on the left-hand-side of (8) for smalls proportional to a weighted average of the
conditional concentratiofl x z(y), with weight functionw(y). In a similar fashion, for the terms on

the right-hand-side one derives
[fXYXY /HX dy, and fYZYZ /HZ

Under the null hypothesis] is conditionally independent of givenY = y, so thatH x »(y) is
equal toH x (y)Hz(y), for all y. It follows that the left- and right-hand-sides of (8) coincide under
the nullifand only if [ Hx (y) Hz(y)w(y) dy — [ Hx (y)w(y)dy | Hz(y)w(y) dy = 0, or

Cov(Hx(S), Hz(S)) = 0, %)

whereS is a random variable with pdf(y). Only under specific conditions, such as eiti&g (y)
or Hz(y) being independent og, (9) holds under the null, and hence (2aydsnds to zero. Also if
Hx(y) andHz(y) depend ory, (9) may hold, but this is an exception rather than the rule. Typically



the covariance between the conditional concentrations ahdZ givenY will not vanish, inducing
a bias in the HJ test for smail

Therefore, letting the bandwidth tend to zero with increasing sample size in the HJ test would
not provide a theoretical solution to the problem of over- or under-rejection caused by positive or
negative covariance of the concentration measures respectively. In simulations for a particular process
and small to moderate sample sizes one can often identify a seemingly adequate rate for bandwidths
vanishing according ta, = Cn~?, for which the size of the HJ test remains close to nominal.
However, this does not imply that using the HJ test with such a sample size dependent bandwidth is
advisable in practice. The optimal choices forand 3 may depend strongly on the data generating
process, and our results show that asymptotically the HJ test for typical processes (those with non-
vanishing covariance of concentrations)fandY’) is inconsistent.

The fact that the conditional concentration measure’étléfand}@rl givenY}Y affect the leading
bias term poses severe restrictions on applicability to economic and financial time series in which
conditional heteroskedasticity is usually present. Consequently there is a risk of over-rejection by the
HJ test which can not be easily eliminated either by using (G)ARCH filtering, or by using a bandwidth
that decreases with the sample size. To avoid this problem, in the next section we suggest a new test
statistic for which a consistent test is obtaineddends to zero at the appropriate rate. The idea is
to measure the dependence betw&eand Z givenY = y; locally for eachy;. By allowing for the
bandwidth to decrease with the sample size, variations in the local {fixelstributions ofX andZ

givenY are automatically taken into account by the test statistic.

4 A modified test statistic

In comparing equations (1b) and (8) it can be noticed that although (1b) holds point-wise for any
triple (x, y, z) in the support offx v,z (x, y, 2), (8) contains separate averages for the nominator and
the denominator of (1b), which do not respect the fact thaythelues on the rhs of (1b) should be

identical. Because (1b) holds point-wise, rather than (8), the null hypothesis implies

_5 |:<fX,Y,Z(X7Y7 Z)  fxy(X)Y) frz(Y.Z)
b= fr(Y) ) fr(Y)

whereg(z,y, z) is a positive weight function Under the null hypothesis the term within the round

)g(X, Y, Z)} =0

brackets vanishes, so that the expectation is zero. Althguginot positive definite, a one-sided test,

rejecting when its estimated value is too large, in practice is often found to have larger power than a
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two-sided test. In tests for serial dependence Skaug and Tjgstheim (1993) report good performance of
a closely related unconditional test statistic (their dependence mefassran unconditional version
of our term in round brackets).

We have considered several possible choices of the weight fungtibeing (i) g1(z,y,z) =
fy (), (i) ga(x,y,2) = f3-(y) and (iii) g3(=,y,2) = fv(y)/fxy(x,y). Monte Carlo simulations
using the stationary bootstrap (Politis and Romano, 1994) indicatedtlzatd go behave similarly
and are more stable thap. We will focus ongs in this paper, as its main advantage of oygers that
the corresponding estimator has a representation as a U-statistic, allowing the asymptotic distribution
to be derived analytically for weakly dependent data, thus eliminating the need of the computationally
more requiring bootstrap procedure. For the chgice y, ) = fZ(y), we refer to the corresponding

functional simply ag;:
=FEfxyz(X.Y,Z)fy(Y) — fxy(X,Y)fr,z(Y, Z)].

A natural estimator of based on indicator functions is:

Z Z XYZ I};Z) 7

i k,k#i j,5#1

(25) dX Qdy dZ

Tale) = n(n —1)(n

whereIiVjV = I(||W; — Wj]| < ). Note that the terms with = j need not be excluded explicitly as
these each contribute zero to the test statistic. The test statistic can be interpreted as an average over
local BDS test statistics (see Broekal., 1996), for the conditional distribution of andZ, given
Y =y,.
If we denote local density estimators ozflaz-variate random vectdi” at W, by

.]/C\W(W Z ij
J:j#

the test statistic simplifies to

(n—1)

==y

Z(]?X,Y,Z(Xi)yia Z) fy (Vi) — J?X,Y(Xi,Yi)J?Y,Z(E, Z;)).

For an appropriate sequenggof bandwidth values these estimators are consistent and the test statis-
tic consist of a weighted average of local contributi(fasyz(x, v, z)fy(y) — fxy(az, y)]?yz(y, )
which tend to zero in probability under the null hypothesis.

In Appendix A.1, using the approach proposed by Powell and Stoker (1996), we show that for

dx = dy = dz = 1 the test is consistent if we let the bandwidth depend on the sample size as
g, =Cn~" (20)

11



for any positive constant’ andj € (%, %). In that case the test statistic is asymptotically normally

distributed in the absence of dependence between the végtordnder suitable mixing conditions
(Denker and Keller, 1983) this can be extended to a time series context provided that covariances

between the local density estimators are taken into account, giving:

Theorem 1 For a sequence of bandwidths given by (10) withC' > 0 and g € (%, %) the test
statisticT,, satisfies:

ﬁ(Tn(eéﬁ—q) - N(0,1).

In appendix A.1 the asymptotic normality @f, is shown under a decreasing bandwidth, while ap-

pendix A.3 considers the autocorrelation robust estimation of the asymptotic vasiabyes?2.

4.1 Bandwidth choice

In the typical case where the local bias tends to zero at the%ate in Condition 1 in Appendix A.1,
the bandwidth choice which is optimal in that it asymptotically gives the estirfigtaith the smallest
mean squared error (MSE) is given by

e = C*n~7
with .
18-3 7
o= (sEnari) -
as derived in appendix A.2.

To gain some insights into the order of magnitudeCtfit is helpful to calculate its value for
some processes. Here we consider the ARCH process given in (3). The optvahle derived in
the appendix is analytically hard to track since it involves the marginal distribution of the process.
However, we can derive an approximate optimal valu€'adinalytically by ignoring the deviation
from normality ofY” (an assumption which is reasonable for smallTakingY” ~ N(0,1) and X, Z
independent and/ (0, 1 + aY?) conditional onY’, we find

e?/aerfe(+/2/a
0= (v2/a), (12)
115272,/a

whereerfc(s) = 1 — erf(s) and

6a/m(3 4+ a) + (a(a — 6) — 9)e¥/ Cerfe(1/3/(2a))
Bls(w)] = ¥ /), 13)
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To investigate the behaviour of the bandwidth for smathne may use the fact that

¢ — W tola) and  E[s(W)] = a2 <288\1/§m2 + o(a)> .
This suggests that asends to zero the (asymptotically) optimal bandwidth diverges at the T4té.
This is consistent with the fact that larger bandwidths are optimal for a smaller correlation between
the conditional concentrations &f andZ givenY'.

The optimal bandwidth for (G)ARCH filtered data depends on the correlation of the conditional
concentrations after filtering, which may depend strongly on the underlying data generating process.
However, the consistency of the test does not require filtering prior to testing, and it is possible to
obtain a rough indication of the optimal bandwidth for raw returns. Since the covariance between
conditional concentrations for bivariate financial time series are mainly due to ARCH/GARCH effects,
egs (12) and (13) can be used together with an estimate of the ARCH coeffi¢obtain a rough
indication of the optimal constaxit* for applications to unfiltered financial returns data. To provide
a feel for the order of magnitude: far= 0.4 one findsC* ~ 8. Note that this value is asymptotically
optimal and may lead to unrealistically large bandwidths for smalln applications we therefore

truncate the bandwidth by taking

En = max(C’n*QN, 1.5). (14)

4.2 Simulations

We use numerical simulations to investigate the behavior of the profgstast with the shrinking
bandwidth given by (10). As the underlying process for the simulations we choose the process (3)
considered before, a bivariate conditional heteroskedastic process with lag one dependence. The
interest in this process is stipulated by its relevance to econometrics and financial time series. The
null hypothesis{ X, } is not Granger causingY; } is satisfied.

Table 1 reports thé&;, test rejection rates (both size and power) for increasing series lervgith
n-dependent bandwidths, given by (10), for a nominal size @%.05. The size computations were
based on the ARCH process (3) with coefficients: 1, a = 0.4. For 8 we used the theoretically
optimal rate of2, and we chos€ = 8.62 which empirically turned out to give fast convergence of
the size to the nominal value05. This C-value is close to the approximate optimal asymptotic value

C* ~ 8 for a = 0.4 reported above.
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n 100 200 500 1000 2000 5000 10000 20000 60000

€ 1.50 150 150 1.20 1.00 0.76 0.62 0.51 0.37
size 0.022 0.033 0.052 0.052 0.051 0.050 0.050 0.052 0.053
power| 0.073 0.155 0.411 0.661 0.900 0.998 1.000 1.000  1.000

Table 1. Observed rejection rates (size and power) of the T,, test for bivariate ARCH process (3) as a function

of the time series length n and decreasing bandwidth € according to (14) (nominal size 0.05). Number of

realisations: 10 000 for n < 60 000, and 3 000 for n = 60 000.

To compute the power we took the same process and reversed the rdl&s}ofnd {Y;}, so

that the relation tested becamgY;} is not Granger causingX;}. For the power calculations the

coefficienta was reduced t0.1 to make the simulations more informative (for highehe power was

one in nearly all cases). The power of the test increasesnwitnaccordance with the consistency of

the test under the decreasing bandwidth procedure.

To provide some guidance for choosing critipavalues in practice for small sample sizes, Fig-

ure 2 shows some size-size plots for smathnging over nominal sizes betwe@and0.15.

0.15

n=100 ——
N=200

0.125

0.1

0.075

actual size

0.05

0.025

0 0.025 0.05 0.075 0.1 0.125 0.15
nominal size

Figure 2: Size-size plot of T,, test for process (3) with shrinking bandwidth for time series lengths n = 100

(solid line), 200 (dashed line), 500 (long-dashed line). The number of realisations is 10 000. The dotted line

along the diagonal represents the ideal situation where the actual size and the nominal size coincide.
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Finally, we present some simulations for ldgs= [y larger than one, since these are used often
for the HJ test. In the applications presented in the next section we compare both tests for larger
values ofl x andly as well, and to motivate this we should check if the empirical size of our new test
does not exceed the nominal size for larger lags. Table 2 gives the empirical rejection rates for the
bivariate ARCH process (3), again with= 1 anda = 0.4, under the null hypothesis (that is, testing
{X:} Granger cause§Y,}) for lag lengthslx = [y ranging from1 to 5. The results indicate that
the rejection rate decreases with = [y, and hence that thg, test is progressively conservative for

increasing lag lengths, so that the risk of rejecting under the null becomes small.

Ix =1y | n=1000 | n = 10000
1 0.0517 0.0502
2 0.0391 0.0316
3 0.0318 0.0197
4 0.0243 0.0112
5 0.0187 0.0099

Table 2: Observed rejection rates (empirical size) of T,, test for bivariate ARCH process (3) as a function of
number of lags lx = ly for time series length n = 1 000 and n = 10 000 with optimal bandwidth € = 1.2 and

e = 0.62 respectively (nominal size 0.05, number of realisations 10 000)

5 Applications

We consider an application to daily volume and returns data for the Standard and Poor’s 500 index

in the period between January 1950 and December 1990. We deliberately have chosen this period
to roughly correspond to the period for which Hiemstra and Jones (1994) found strong evidence for
volume Granger-causing returns (1947 — 1990) for the Dow Jones index. To keep our results com-
parable with those of Hiemstra and Jones, we closely followed their procedure. That is, we adjusted
for day-of-the-week and month-of-the-year effects on returns and percentage volume changes, using
a two-step procedure in which we first adjust for effects in the mean, and subsequently in the vari-
ance. The calendar adjusted, standardized, returns and percentage volume change data were used to
estimate a linear bivariate VAR model, the residuals of which are considered in the application below.

We applied the HJ andl, test to the VAR residuals, before as well as after EGARCH(1,1) filtering

the VAR residuals of the returns data. Table 3 shows the resulting T-values for the H;] &gt in
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both directions, foix = Iy = 1,...,8 and for two different values of: 1.5, the value used by
Hiemstra and Jones (1994) for the Dow Jones data,Oafidwhich is roughly the optimal value
(C* ~ 0.57) we found from egs (11)—(13) for the ARCH coefficientestimated from the data as
0.27.

returns= volume volume=- returns
e=1.5 e=0.6 e=1.5 e=0.6
Ix =ly HJ Ty HJ Ty HJ Ty HJ 15
before filtering
1 9.476** 9.415** 10.298**  8.850** 5.351**  5.106™* 5.736**  4.893**
2 10.989**  11.076** 10.616**  8.182** 6.671*"  6.447** 6.818**  5.396**
3 10.909**  10.662** 9.112**  6.425** 6.026**  5.683** 5.717**  3.948**
4 10.758** 9.823** 7.934**  5.121** 6.029**  5.552** 4.692**  2.887**
5 10.118** 8.856** 5.821**  3.540** 5.695**  5.191** 2.837**  1.234
6 9.428** 7.903** 4.391**  2.603** 5.935**  5.338** 3.314**  1.604
7 8.959** 7.4215** 3.102**  2.085* 5.194**  4.706** 1.327 0.248
8 8.494** 6.577** 1.649*  0.701 4.484**  4.085** 0.418 0.567
after EGARCH filtering
1 7.461** 7.429** 7.946**  6.781** 1.532 1.481 1.628 1.529
2 8.444** 8.600** 8.012**  6.493** 3.022**  3.091** 3.251**  2.825**
3 7.537%* 7.788%* 6.381**  5.109** 1.894* 1.982* 2.534**  2.023*
4 7.257** 7.198** 5.169**  3.900** 2.141* 2.225* 1.964* 0.989
5 6.125** 6.107** 2.686**  2.023* 2.095* 2.142* 1.160 0.853
6 5.582** 5.445%* 2.136* 1477 2.969**  2.965** 1.411 1.129
7 5.028** 4.873** 1.192 0.532 2.278* 2.285* 1.414 0.943
8 4.495** 4.249** 0.779 0.253 1.754* 1.725* 0.398 0.860

Table 3. T-ratios for the S&P500 returns and volume data. Results are shown for the HJ test and T,, for
bandwidth values of 1.5, the value used by Hiemstra and Jones (1994) and 0.6, corresponding to the optimal
bandwidth for T,, (based on an estimated ARCH parameter 0.27). T-ratios before and after EGARCH filtering
the returns are given, forlx = ly = 1,...,8. The asterisks indicate significance at the 5% (*) and 1% (**)

levels.

The results obtained with both tests strongly indicate evidence for returns affecting future volume
changes, for nearly all lags and both bandwidths. Only for large values of théxlags iy the

evidence is somewhat weaker. Although both tests point in the same direction, when comparing the
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overall results for equal bandwidths and ldgs= [y the T-values are somewhat smaller for ffie

test than for the HJ test. As argued in the previous sections, the HJ test may be inconsistent due to a
bias which cannot be removed simply by choosing a smaller bandwidth. To investigate the possible
effects of this bias one should contrast the HJ test with our new test with an appropriately scaled
bandwidth, which we have shown to be consistent asymptotically. That is, at least for the unfiltered
data, one should actually compare the HJ test fer 1.5 with the 7T, test for the adaptive bandwidth

0.6. In that case the table shows even larger differences between the T-values of the HJ test and the
T, test.

For the other causal direction — volume changes affecting future returns — the different results
obtained for the HJ test with = 1.5 and theT,, test withe = 0.6, for the filtered data is large
enough to make a difference for obtaining significance attieand 1% nominal level for several
lags. Overall, the evidence for volume changes affecting future returns, although still present after
filtering for laglx = Iy = 2 and arguably, is much weaker fof;, with ¢ = 0.6 than for the HJ test
with e = 1.5.

In summary, our findings on the basis of the Standard and Poor’s data indicate that the strong
evidence for volume Granger causing returns obtained with the HJ test may be partly due to the bias
we identified in the HJ test statistic. If the test is performed with the consigiestatistic with a near-
optimal bandwidth, for which theory and simulations indicate that the actual size is close to nominal,
the evidence for volume Granger causing returns tends to become weaker. Finally, since the T-values
can be seen to decrease for smatlén most cases, the results also suggest that, when in doubt, it
is better to use a smaller bandwidth. Intuitively this is related to the fact that it reduces the bias and
increases the variance of the test statistic relative to the bias, so that the risk of over-rejection becomes

smaller.

6 Concluding Remarks

Motivated by the fact that the HJ test can over-reject, as demonstrated in simulations, our aim was to
construct a new test for Granger non-causality. By analyzing the HJ test analytically we found it to
be biased even if the bandwidth tends to zero. Based on the analytic results, which indicated that the
bias is caused by covariances in conditional concentrations, we proposed a new testBtattistic

automatically takes the variation in concentrations into account.
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By symmetrizing the new test statistic, we expressed it as a U-statistic for which we developed
asymptotic theory under bandwidth values that tend to zero with the sample size at appropriate rates.
The theory allowed us to derive the optimal rate as well as the asymptotically optimal multiplicative
factor for the bandwidth. For ARCH type processes the optimal bandwidth can be expressed in terms
of the ARCH coefficient, which is useful for getting an indication of the order of bandwidth magnitude
to be used in practice for financial returns data. Simulations for the new test confirmed that the size
converges to the nominal size fast as the sample size increases. Additional simulations indicated that
the test becomes conservative for larger lags taken into account by the test.

In an application to relative volume changes and returns for historic Standard and Poor’s index
data we found that some of the strong evidence for relative volume changes Granger causing returns
obtained with the HJ test may be related to its bias, since use of the new test, which is shown to be
consistent, strongly weakens the evidence against the null hypothesis. This result suggests that some

of the rejections of the Granger non-causality hypothesis reported in the literature may be spurious.
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A Appendix

A.1 Asymptotic distribution of T,

The test statisti@’}, can be written in terms of a U-statistic by symmetrization with respect to the three

different indices. This gives

1

Tule) = n(n—1)(n —2)

> KW, Wy, Wy)
ikt

with W; = (X, v, Z)),i=1,...,nand
XYZ 7Y XY 1YZ XYZ 7Y XY 1YZ
(Iik I — Iy I ) + <Iij Ly — 57 I, > +
XYZ 7Y XY 1YZ XYZ71Y XY 1YZ
(Ijk 0 - X1 ) + (Iﬁ o -, )+
(Y20 - X 7 ) + (15 2n, - 1Y i)

(15)

(25)—dx—2dy—dz
6

K(W;,W;, W) =

For a given bandwidth the test statisti@’, is a third order U-statistic. To develop asymptotic distri-
bution theory under a shrinking bandwidthwe closely follow the methodology proposed by Powell

and Stoker (1996). Although their main goal was to derive MSE (mean squared error) optimal band-
widths for point estimators, it turns out that similar considerations can be used to derive rates for the
bandwidth that provide consistency and asymptotic nhormality,of We first treat the analytically
simplest case of a random samplé’; }7_,, and deal with dependence later.

Becausdl;, is a U-statistic, its finite sample variance is given by (see e.g. Serfling, 1980):

9 18 6
Var(Tn):n41+n2§2+7f,C3+o<il+7§22+7€§>,

where
G = Cov(K (Wi, Wy, Ws), K(Wy, W), W3)) = Var(K1(W1))
G = Cov(K (Wi, Wy, W3), K(Wy, Wa, W3) = Var(Ka (Wi, W2))
(s = Var(K (Wi, Ws, W3)),
with Wy, Wo, W5, W5 and W4 all independent and identically distributed accordingikd The
functions K1 (wy) and Ka (w1, ws) are given byK; (wy) = E[K (w1, Wa, W3)] and Ko (wy, ws) =
BlK (wy, wa, Ws)].
Following Powell and Stoker (1996), definéw, c) = K;(w,e) andry(w) = lime_o r(w, ). It
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can be verified that

ro(w) = 3fxyz@y,2)fyy) + 35 W Hxz(y) — 5fxy (@) fr.z(y,2)
_%fY,Z(ya Z)fy(y) f fX,Y(xlv y)fX,Y,Z(x/7 Y, Z)d{l}l
— 2 fxy (@i W) [ friz(y,2) fxy,z(x,y,2)d7 .

For example, the fourth term on the right-hand-side follows from:

(2e) 2= dz By (XY TE7] =[xy (@, k) 0y, (@, y) 157 Ay, dyp(26) = 797 +o(1)
= fX,Y(xjvyj)Iz'jZ(2€)7dY7dZ +O(1)7
whered,, (v) stands for the kronecker delta function, which can be thought of as the limiting pdf of a

random variable with all mass at the poigt and

(2e) D=2 Bw,[fxy (@, u) 157 = [ Py (@5,97)0y, .2 (Wi 20) Fx v,z (24, 5, ) dzej dy; dzj + o(1)
= [ fxy (i u) fxy,z(xj,yi, zi)dz; + o(1).
Adapting from Powell and Stoker (1996), we assume the following three conditions:

Condition 1: (rate of convergence of pointwise biasi@tv;, €)). The functions(w;, €) satisfy
T(/wiv 5) - TO(wi) = S(wi)ga + S*(wia 8)7

for somea > 0, and the remainder ternsi*(-) satisfiesE||s* (W5, h)||? = o(h%?).

For our kernel the bias in each of the contributions to the kernel converges to zeroattate
Therefore Condition 1 holds withh = 2. In fact it might be possible to replace the local bias Condition
1 by a global version, involvindZ[r(W;, e) — ro(W;)], which may tend to zero faster than the local
bias. However, for our purposes the local assumption with 2 suffices.

Condition 2: (series expansion for second moment/of(1W;, Ws)). The functionKs(w, we)
satisfies

E [(K2a(W1, W2))?] = g™ + g5 (¢)

for somey > 0, where the remainder terig satisfies(q;(c))? = o(e ™).

This is a weaker version of Powell and Stoker’s (1996) Assumption 2, which required a series
expansion locally. For our purposes the weaker assumption suffices7iica global functional of
the distribution ofiV'.
Condition 3: (series expansion for second momenkdii’;, Wy, W3)). The functionk (wy, we, w3)
satisfies

E [(K (W1, W2, W3))?] = gze° + g3 (e)

20



for somes > 0, where the remainder tergi satisfies¢;(¢))? = o(¢7?).

For our kernel Condition 3 is satisfied with= d x + 2dy + dz, since none of the contributions to
the kernel have a variance increasing faster ihan at the rate?x24v+dz _Finding an appropriate
value for~ in Condition 2 is somewhat more involved. We examine the rate at which each of the
contributions to the kernel function depend:orFor example, for the tertfRe ) ~dx —2dv —dz [ XY Z ¥
we find Eyy, [(2¢) ~@x —2dv—dz [XYZ[X] — (2e)~% fxy 7(X;,Yi, Zi)I}; + o(1) from which one

obtains
2
E [((25)@]3% xrl) ] = (29) 2 E |3 y,(X0, Vi, Z)TY + o(e™))
= (20) W E [y 1(X0 Y5 Z0) fr (V)] + o).
Proceeding in this way for each of the terms in the kernel, one finds that the dominant contributions
are given by the term@e) ~dx —2dv ~dz [XYZ [} and(2¢) ~dx —2dv —dz [XYZ Y | For the first of these

one findsEyy, [(2e) ~4x 24y ~dz [FYZ[X] = (2¢)~dx—dv=dz [ZYZ f3.(Y;) + o(1), giving

2
E [((2€)dxddeEWk [Ii)j(YZIBIZD } = (2¢)2x—2dy—2dz [Igyzf%(m)} +o(e—dx—dv—dz)

= (20) XY E [fx vz (X0, Yi, Zi) [3(Yi)]
to(e~dx—dv—dz),
All other terms increase with vanishingslower, which demonstrates that Condition 2 holds with
v = dx + dy + dz and a constang, given byg, = % x 27 dx=dv=dz P fv v 7 (X, Vi, Zi) fE(Y2)).
The factor4 enters due to the fact that there are two terdig;, [(2¢) 4x 2%~z [ZYZ Y] and
By, [(2e)~Ox—2dv=dz [ZYZ ¥ ], which are asymptotically perfectly correlated ifends to zero suf-
ficiently slowly with the sample size.

It follows from Condition 1 that
Var [r(W;, e)] = Var [ro(W;)] + Coe® 4 o(e%),
whereCy = 2Cov [ro(W;), s(W;)]. We can thus express the mean squared errd}, afs
MSE[T,] = (E[s(W;)]) g2 4 2C e* + gVar [ro(W;)] + §qgef“/ + Eq gd (16)
n 7 n 0 n 0 7 TZ2 n3 3 .

T, is asymptoticallyN (0, 0% /n) distributed witha? = 9Var[ro(W;)], provided that each of the
dependent terms in the MSE @F, areo(n~!). If we lete ~ n=?, this implies the following four

conditions should hold:
—2af0 < —1, —af <0, B8 <1, 00 < 2.
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The first two of these imply3 > ;= = 1 ands > 0, respectively, while the last two imply < % =

2

andg < 5 = Because————+— the conditions can be

1 2 1 2
dxTdy Tdz dx T 2dy ¥dz IxTdytdz ~ dxT2dyTdz’

summarized as; < 3 < m. Therefore, for the caséy = dy = dz = 1, and a sequence of
bandwidths,, ~ n~" for someg € (1, 1), the test statistic is asymptotically normal:

\/ﬁTn(sn) —dq LN(O, 1)

g
with o2 = 9Var[ro(W;)].
Note that it might also be possible to derive appropriate values for thg fatel x +dy +dz > 3,
but only provided that the overall bids{s(1V;)] tends to zero faster thad.

A.2 Optimal Bandwidth

The MSE optimal bandwidth balances the dominating squared bias and variance terms (the first and
fourth term on the right-hand-side of Eq. (16)), the other bandwidth dependent terms being of smaller
order. The optimal bandwidth which asymptotically minimizes the sum of these terms is given by

o (183 N\ s
) <4<E[s<w>1>2) | 0

To guide the choice of the multiplicative factérin ¢ = C’n‘%, it is illustrative to examine the

1
optimal choiceC* = <4( 18-3¢ ) " in specific cases. Above an expressiongowas found already

Els(W)])?
in terms of the joint density of’. A similar expression fo2[s(1/;)] can be found by using local
taylor expansions of the density of, locally nearw;. As each of the 6 terms if,, have the same

expectation, to determine the bias we consider the first of these only:

(26)—dx—2dy—dz (Ii)(YZIZ}; _ IZ)’gYIZ};Z)

Taking averages overandk for a fixed vectorw; leads to an expression involving plug-in estimators
of local densities

(2¢) " Ix 2y —dz XYZY XY [YZy_ T 7 7 n
(= 1)(n—2) SN IR LT = Fxyz(@i v z0) Fr () — Fx v (i, vi) Frz (i, 20).-
J# kFg

An expression for the local bias can be obtained by examining the bias of each of the estimated
densities in this expression.
For a general densitfi (v) of a random vector’ = (V1,..., V™), of which a samplgV;}" ,

is available, the bias of(7) = (2¢)m1 Yo I(]|Vi— 0| < e) locally ato can be found from a taylor

n
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expansion of the density g% (v) aroundo:

-
—
<
S~—
|
-
—
IS4
SN—
Il
]
8
/-\
C
|
‘S
l\D\ —

ZZ (v' — ) (0! —7) + O(|lv — ||?),

vz J(v) andb;;(v) = %;vj lv=5f(v). The local bias of(ﬁ) is given by

o~ m+€ . .
E[f(®)] - f(v) = 25 _mZZ/l_ / (v — ) (v — 7Y dvt ... do™ + o(e?)

i=1j=1""
v+£

_ %(25)— 3 / bia(9) (v — )%’ + o(c?)

° 5i—
i=17V ¢

= (25)_1é53 i bis () 4 o(e?)

— éé-?v?f(f;) :r o(e?).

Up to leading order i, the bias of products of estimated densities follows from identities such
asE(fv fw] = El(fv + (Jv = i) (fw + (Fw = fw)] = v fw + fvE[fw — fw] + fwElfv —
fV} -+ 0(82). In this way the local bias Of)gyz(%h Yi, Zz)fy(yz) — f)gy(xi, yz‘)fyz(yi, Zz‘) can be

written as

r(wi,e) —ro(wi) = 22 [fy W)V fx v,z (i, i 2i) — Fxy (@i, 4:) V2 vz (yis 2)

+Ixyv,2(@0, yis 2) V2 fy (i) — friz (Wi 2) V2 xy (6, 1) | 4 o(e2),
(18)

which shows that Condition 1 holds far= 2 ands(w) equal to onésth of the term between square

brackets. Suppressing the subscripts for convenience, one may write

s(w) = §FWIVaf(x,y,2) + Vi f(z,y,2) + Vif(z,y,2)]
— 5/ (@, 9)[Vaf(y, 2) + Vif(y, 2)]

5/, 2)[Vaf(x,y) + Vi f(z,9)]
§f(xy

+ ,2)Vaf(y),

whereV?2 = fol 5.7z and V2 and V2 are defined analogously. Upon taking expectations with
respect tdlV one obtains the coefficient of the leading bias terifa(W)], which enters expression
(17) for the optimal bandwidth.

Under the null hypothesis the leading bias term can be simplified by rewriting it in terms of
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conditional densities:

s(w) = §fW)f(z, )V fylz,2) -
—5/(w, ) [ @)V f(ylz
+5f W) f(y, Z)Vi[f
+5f (@) fY)VELS

y)f(2)V, f(yl2)
5/ (@, y,2)V; f(y)
zly, z) — f(z[y)]
zlz,y) — f(z|y)].

6/ (@,
)+

—_— o~

The terms within square brackets are zero if the null hypothesis holds. The remaining terms can be

expressed as:

S(M) = %v?/[f(y)f(xﬂ/v Z) - f(CC, y)f(y7 Z)]
Vyf(y) : vyf(x7y7 Z) + %vyf(xa y) : Vyf(y, Z)a

whereV, is the gradient operator, and the dot denotes the usual vector inner product. Again the term

in square brackets vanishes under the null, and the remaining terms reduce to
1 2
s(w) = 37 W)Vyf(aly) - Vyf(2ly).
Finally, the following expression faE'[s(W)] under the null is obtained by taking expectations of this
local expression with respect to the random veégtar

Bls(W)] = 5 By [f(V)VHx(Y) - VH(Y)].

A.3 Dependence

According to Denker and Keller (1983), for weakly dependent @t still asymptoticallyN (q, %2)
distributed, provided that the covariance amongst(@V;) is taken into account in the asymptotic

variances?:

a?=9 VaI‘(To(Wl)) + 2 Z COV(T‘o(Wl), To(W1+k)>
k>2
If we estimatery(1V;) as
(25) dX Qdy dZ

(n—

ro(W;) =

Z > K (Wi, Wy, W),

J.J# k. k#i

an autocorrelation consistent estimator48ris given by (Newey and West, 1987):
K
S2 =" Ryws,
k=1
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whereR;, = - z?;f(?o(wi) — T,,)(ro(Wisx) — T,) is the sample autocovariance function of
ro(W;), andwy, a decreasing weight function as in Hiemstra and Jones (1994). It follows that
T, —
which proves Theorem 1.
AlthoughT;, is a third order U-statistic, both, and the asymptotic varian& can be determined
in O(n?) computational time. For eadhthe calculation offW(Wi) and theIiV]V is O(n). A second

O(n) calculation then provide& (17;) through

ro(Wi) = 3 (]?X,Y,Z(Xi,Y;a Zi) fy (Vi) — J?X,Y(Xi,Yz')fY,Z(E,ZiD
o 3, Pz (X, Vi, Z) 15 (20) 78 + XY 2 Jy (¥;) (26) v —dz
P (Xp, Y157 (22) 17 — XY Fy (Y, 2,)(26) x4 )
a result which follows from straightforward calculation from the definitiomgfV;). C-code can be

obtained from the authors upon request.
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