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Abstract

In this paper we introduce a new nonparametric test for Granger non-causality which avoids

the over-rejection observed in the frequently used test proposed by Hiemstra and Jones (1994).

After illustrating the problem by showing that rejection probabilities under the null hypothesis

may tend to one as the sample size increases, we study the reason behind this phenomenon ana-

lytically. It turns out that the Hiemstra-Jones test for the null of Granger non-causality, which can

be rephrased in terms of conditional independence of two vectorsX andZ given a third vector

Y , is sensitive to variations in the conditional distributions ofX andZ that may be present under

the null. To overcome this problem we replace the global test statistic by an average of local

conditional dependence measures. By letting the bandwidth tend to zero at appropriate rates, the

variations in the conditional distributions are accounted for automatically. Based on asymptotic

theory we formulate practical guidelines for choosing the bandwidth depending on the sample

size. We conclude with an application to historical returns and trading volumes of the Standard

and Poor’s index which indicates that the evidence for volume Granger-causing returns is weaker

than suggested by the Hiemstra-Jones test.

Keywords: Financial time series; Granger causality; Nonparametric; Hypothesis testing; Size dis-

tortion; U-statistics;
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1 Introduction

Granger (1969) causality has turned out to be a useful notion for characterizing dependence relations

between time series in economics and econometrics. Intuitively, for a strictly stationary bivariate

process{(Xt, Yt)}, {Xt} is a Granger cause of{Yt} if past and current values ofX contain additional

information on future values ofY that is not contained in past and currentY -values alone. If we denote

the information contained in past observationsXs andYs, s ≤ t, byFX,t andFY,t, respectively, and

let ‘∼’ denote equivalence in distribution, the formal definition is:

Definition 1 For a strictly stationary bivariate time series process{(Xt, Yt)}, t ∈ Z, {Xt} is a

Granger cause of{Yt} if, for somek ≥ 1,

(Yt+1, . . . , Yt+k)|(FX,t,FY,t) 6∼ (Yt+1, . . . , Yt+k)|FY,t.

Since this definition is general and does not involve any modelling assumptions, such as a linear

autoregressive model, it is often referred to as general or, by a slight abuse of language, nonlinear

Granger causality.

Traditional parametric tests for Granger non-causality within linear autoregressive model classes

have reached a mature status, and have become part of the standard toolbox of economists. The recent

literature, due to the availability of ever cheaper computational power, has shown an increasing interest

in nonparametric versions of the Granger non-causality hypothesis against general (linear as well as

nonlinear) Granger causality. Among the various nonparametric tests for the Granger non-causality

hypothesis, the Hiemstra and Jones (1994) test (hereafter HJ test) is the most frequently used among

practitioners in economics and finance. Although alternative tests, such as that proposed by Bellet

al. (1996), and by Su and White (2003), may also be applied in economics and finance, we limit

ourselves to a discussion of the HJ test and our proposed modification of it.

The reason for considering the HJ test here in detail is our earlier finding (Diks and Panchenko,

2005) that this commonly used test can severely over-reject if the null hypothesis is true. The aim

of the present paper is two-fold. First, we derive the exact conditions under which the HJ test over-

rejects, and secondly we propose a new test statistic which does not suffer from this serious limitation.

We will show that the reason for over-rejection of the HJ test is that the test statistic, due to its

global nature, ignores the possible variation in conditional distributions that may be present under the

null hypothesis. Our new test statistic, provided that the bandwidth tends to zero at an appropriate
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rate, automatically takes into account such variation under the null hypothesis while obtaining an

asymptotically correct size.

The practical implication of our findings is far-reaching: all cases for which evidence for Granger

causality was reported based on the HJ test may be caused by the tendency of the HJ test to over-reject.

Reports of such evidence are numerous in the economics and finance literature. For instance, Brooks

(1998) finds evidence for Granger causality between volume and volatility on the New York Stock

Exchange, Abhyankar (1998) and Silvapulla and Moosa (1999) in futures markets, and Ma and Kanas

(2000) in exchange rates. Further evidence for causality is reported in stock markets (Ciner, 2001),

among real estate prices and stock markets (Okunevet al., 2000, 2002) and between London Metal

Exchange cash prices and some of its possible predictors (Chen and Lin, 2004). Although we do not

claim that the reported Granger causality is absent in all these cases, we do state that the statistical

justification is not warranted.

This paper is organized as follows. In section 2 we show that the HJ test statistic can give rise

to rejection probabilities that tend to one with increasing sample size under the null hypothesis. In

section 3 the reason behind this phenomenon is studied analytically and found to be related to a

bias in the test statistic due to variations in conditional distributions. The analytic results suggest

an alternative test statistic, described in Section 4, which automatically takes these variations into

account, and can be shown to give asymptotic rejection rates equal to the nominal size for bandwidths

tending to zero at appropriate rates. The theory is confirmed by the simulation results presented at the

end of the section. In Section 5 we consider an application to S&P500 volumes and returns for which

the HJ test indicates volume Granger-causing returns, while our test indicates that the evidence for

volume causing returns is considerably weaker. Section 6 summarizes and concludes.

2 The Hiemstra-Jones Test

In testing for Granger non-causality, the aim is to detect evidence against the null hypothesis

H0 : {Xt} is not Granger causing{Yt},

with Granger causality defined according to Definition 1. We limit ourselves to tests for detecting

Granger causality fork = 1, which is the case considered most often in practice. Under the null

hypothesisYt+1 is conditionally independent ofXt, Xt−1, . . ., givenYt, Yt−1, . . .. In a nonparametric

setting, conditioning on the infinite past is impossible without a model restriction, such as an assump-
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tion that the order of the process is finite. Therefore, in practice conditional independence is tested

using finite lagslX andlY :

Yt+1|(X lX
t ;Y lY

t ) ∼ Yt+1|Y lY
t ,

whereX lX
t = (Xt−lX+1, . . . , Xt) andY lY

t = (Yt−lY +1, . . . , Yt). For a strictly stationary bivariate

time series{(Xt, Yt)} this is a statement about the invariant distribution of thelX +lY +1-dimensional

vectorWt = (X lX
t , Y lY

t , Zt), whereZt = Yt+1. To keep the notation compact, and to bring about

the fact that the null hypothesis is a statement about the invariant distribution ofWt, we often drop

the time index and just writeW = (X, Y, Z), where the latter is a random vector with the invariant

distribution of(X lX
t , Y lY

t , Yt+1). In this paper we only consider the choicelX = lY = 1, in which

caseW = (X, Y, Z) denotes a three-variate random variable, distributed asWt = (Xt, Yt, Yt+1).

Throughout we will assume thatW is a continuous random variable.

The HJ test is a modified version of the Baek and Brock (1992) test for conditional independence,

with critical values based on asymptotic theory. To motivate the test statistic it is convenient to restate

the null hypothesis in terms of ratios of joint distributions. Under the null the conditional distribution

of Z given (X, Y ) = (x, y) is the same as that ofZ givenY = y only, so that the joint probability

density functionfX,Y,Z(x, y, z) and its marginals must satisfy

fX,Y,Z(x, y, z)
fX,Y (x, y)

=
fY,Z(y, z)

fY (y)
, (1a)

or equivalently
fX,Y,Z(x, y, z)

fY (y)
=

fX,Y (x, y)
fY (y)

fY,Z(y, z)
fY (y)

(1b)

for each vector(x, y, z) in the support of(X, Y, Z). The last equation is identical tofX,Z|Y (x, z|y) =

fX|Y (x|y)fZ|Y (z|y), which explicitly states thatX andZ are independent conditionally onY = y,

for each fixed value ofy.

The Hiemstra-Jones test employs ratios of correlation integrals to measure the discrepancy be-

tween the left- and right-hand-sides of (1a). For a multivariate random vectorV taking values inRdV

the associated correlation integralCV (ε) is the probability of finding two independent realisations of

the vector at a distance smaller than or equal toε:

CV (ε) = P [‖V1 − V2‖ ≤ ε], V1, V2 indep.∼ V

=
∫ ∫

I(‖s1 − s2‖ ≤ ε)fV (s1)fV (s2) ds2 ds1

whereI(‖s1−s2‖ ≤ ε) is the indicator function, which is one if‖s1−s2‖ ≤ ε and zero otherwise, and

‖x‖ = supi=1,...,dV
|xi| denotes the supremum norm. Hiemstra and Jones (1994) argue that Equation
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(1a) implies for anyε > 0:
CX,Y,Z(ε)
CX,Y (ε)

=
CY,Z(ε)
CY (ε)

(2a)

or equivalently
CX,Y,Z(ε)

CY (ε)
=

CX,Y (ε)
CY (ε)

CY,Z(ε)
CY (ε)

. (2b)

The HJ test consists of calculating sample versions of the correlation integrals in (2a), and then testing

whether the left-hand- and right-hand-side ratios differ significantly or not. The estimators for each

of the correlation integrals take the form

CW,n(ε) =
2

n(n− 1)

∑ ∑
i<j

IW
ij ,

whereIW
ij = I(‖Wi −Wj‖ ≤ ε). For the asymptotic theory we refer to Hiemstra and Jones (1994).

As stated in the introduction, the main motivation for the present paper is that in certain situations

the HJ test rejects too often under the null, and we wish to formulate an alternative procedure to

avoid this. Before investigating the reasons for over-rejection analytically, we use a simple example

to illustrate the over-rejection numerically, and to show that simple remedies such as transforming

the data to uniform marginals and filtering out GARCH structure do not work. Diks and Panchenko

(2005) demonstrated that for a process with instantaneous dependence in conditional variance the

actual size of the HJ test was severely distorted. Here we illustrate the same point for the similar

process, but without instantaneous dependence:

Xt ∼ N
(
0, c + aY 2

t−1)
)

Yt ∼ N
(
0, c + aY 2

t−1)
)
.

(3)

This process satisfies the null hypothesis;{Xt} is not Granger causing{Yt}. The values for the

coefficientsa andc are chosen in such a way that the process remains stationary and ergodic (c > 0,

0 < a < 1).

We performed some Monte Carlo simulations to obtain the empirical size of the HJ test for the

ARCH process (3) with coefficientsc = 1, a = 0.4. For various sample sizes, we generated 1 000

independent realisations of the bivariate process and determined the observed fraction of rejections

of the null at a nominal size of0.05. The solid line in Figure 1 shows the rejection rates found as a

function of the time series lengthn. The simulated data were normalized to unit variance before the

test was applied, and the bandwidth was set toε = 1, which is within the common range(0.5, 1.5)

used in practice. For time series lengthn < 500 the test based on the original series under-rejects.
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Figure 1: Observed rejection rates (empirical size, number of realisations: 1 000) of the HJ test (ε = 1) for the

bivariate ARCH process (3) as a function of the time series length n (nominal size 0.05) for: original data (solid

line), uniformly transformed data (long-dashed line), ARCH filtered data (dashed line) and for data generated

with model (4) and filtered with a misspecified ARCH(1) model (dotted line).

Its size is close to nominal for series lengthn = 500. For longer series the actual size increases and

becomes close to one whenn = 60 000. The reason that the observed size increases with the series

lengthn is that, as detailed in the next section, the test statistic is biased in that it does not converge in

probability to zero under the null as the sample size increases. As the sample size increases the biases

converges to a nonzero limit while the variance decreases to zero, giving rise to apparently significant

values of the test statistic. In comparison with the process with instantaneous dependence considered

in Diks and Panchenko (2005) the current process indicates less size distortion. This is due to the

weaker covariance between the concentration measuresHX andHZ for the current process, which is

the main cause of the bias.

As suggested by Pompe (1993) in the context of testing for serial independence, transforming the

time series to a uniform marginal distribution by using ranks, may improve the performance of the

test. Here we investigate if it reduces the bias of the HJ test. The long-dashed line in Fig. 1 shows that

the uniform transform improves the size for time series of lengthn = 1 000, but magnifies the size

distortion for time series lengthn > 2 000.
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As another solution one might argue that it is possible to filter out the conditional heteroskedastic-

ity using a univariate (G)ARCH specification. This would remove the bias caused by the conditional

heteroskedasticity in the HJ test. However such a filtering procedure has several drawbacks. First, it

may affect the dependence structure and consequently the power of the test. Second, a (G)ARCH filter

may not fully remove the conditional heteroskedasticity in the residuals. To illustrate the latter point

we filtered the original series considered before by univariate ARCH(1) model. The parameters of the

model were estimated for every realisation using the asymptotically efficient two stage procedure of

Engle (1982). Figure 1 (dashed line) shows that the filtering removes the bias for time series length

n < 30 000, however the actual size remains distorted for longer series.

It is important to mention that in the previous case the correct model for the conditional variance

of seriesYt was used and, as the next section clarifies, most of the source of the bias was removed. In

practice the correct model is not known and the model used to filter out the heteroskedasticity is likely

to be misspecified. To show the effect of model misspecification we generated data according to the

following “exotic” ARCH model:

Xt ∼ N
(
0, c + aY 2

t−1 exp(−bY 2
t−1))

)
Yt ∼ N

(
0, c + aY 2

t−1 exp(−bY 2
t−1))

)
.

(4)

With parametersc = 1, a = 2 and b = 0.4 the process (4) is stationary and the fluctuations in

the conditional variance are similar in magnitude as for the ARCH process (3) with the coefficients

considered before. Instead of using a correctly specified filter we proceeded as before, calculating the

size using a conventional ARCH(1) filter prior to application of the HJ test. The results represented

by the dotted line in Fig. 1 indicate that the misspecified ARCH(1) filter is not able to remove large

part of the source of bias and the sensitivity of the HJ test to dependence in the conditional variance

leads to over-rejection, even for shorter time series.

3 Bias from correlations in conditional concentrations

In this section we show that the reason that the HJ test is inconsistent is that the assumption made by

HJ that (1a) implies (2a) does not hold in general. In fact (2a) follows from (1a) only in specific cases,

e.g. when the conditional distributions ofZ andX givenY = y do not depend ony. To see this, note
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that under the null hypothesis

P [‖X1 −X2‖ < ε, ‖Z1 − Z2‖ < ε|Y1 = Y2 = y]

= P [‖X1 −X2‖ < ε|Y1 = Y2 = y]P [‖Z1 − Z2‖ < ε|Y1 = Y2 = y],
(5)

whereas Equation (2b) states

P [‖X1 −X2‖ < ε, ‖Z1 − Z2‖ < ε|‖Y1 − Y2‖ < ε]

= P [‖X1 −X2‖ < ε|‖Y1 − Y2‖ < ε]P [‖Z1 − Z2‖ < ε|‖Y1 − Y2‖ < ε].
(6)

In general these conditions are not equivalent. In both equations a statement regarding the factorization

of probabilities is made, but the events on which the conditioning takes place differ. In general,

under the null the conditional distributions ofX and Z are allowed to depend onY . Therefore,

the distributions ofX1 − X2 and Z1 − Z2 will generally depend, under the null, onY1 and Y2.

Even for smallε the condition in Equation (6) holds for many close but very differentY1, Y2 pairs.

Therefore, for smallε the left-hand-side of Equation 6 behaves as an average of that of Equation (5)

over all possible values ofy. Because factorization of densities is not preserved under averaging —

af1(x)g1(z) + (1 − a)f2(x)f2(z) typically cannot be written as the product of a function ofx and

of z — the average probability on the left-hand-side of Equation (6) will typically not factorize in the

form on the right-hand-side.

Although this argument shows that the relationship tested in the HJ test is generally inconsistent

with the null hypothesis, one might argue that the test could still be asymptotically valid if appropriate

measures are taken to eliminate the ‘bias’ in Eq. (2a) asymptotically, for example by allowing for the

bandwidthε to tend to zero at an appropriate rate with increasing sample size.

To see whether such an approach might work we examine the behavior of the fractions in (2a) for

small values of the bandwidthε. For continuous distributions the following smallε approximation is

useful:

CV (ε) =
∫ ∫

I(‖s1 − s2‖ ≤ ε)fV (s1)fV (s2) ds1 ds2

=
∫ ∫

Bε(s1)
fV (s2) ds2 fV (s1) ds1 + o(εdV )

= (2ε)dV

∫
f2

V (s) ds + o(εdV )

= (2ε)dV HV + o(εdV ),

(7)

whereBε(s1) denotes a ball (or, since we use the supremum norm, a hypercube) with radiusε centered

at s1. The constantHV ≡
∫

f2
V (s) ds = E [fV (V )] can be considered as aconcentration measureof

V . To illustrate this, consider a family of univariate pdfs with scale parameterθ, that is,fV (v; θ) =
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θ−1g(θ−1v) for some pdfg(·). One readily finds
∫

f2
V (s; θ) ds = 1

θ

∫
g2(s) ds = cnst.

θ , which shows

that, in the univariate case, the concentration measure is inversely proportional to the scale parameter

θ. For later convenience, for a pair of vector-valued random variables(V, Y ) of possibly different

dimensions, we also introduce theconditional concentrationof the random variableV givenY = y,

asHV (y) =
∫

f2
V |Y (v|y) dv = (

∫
f2

V,Y (v, y) dv)/f2
Y (y).

By comparing the leading terms of the expansion in powers ofε in equations (2b) and (7), we find

that
E[fX,Y,Z(X, Y, Z)]

E[fY (Y )]
=

E[fX,Y (X, Y )]
E[fY (Y )]

E[fY,Z(Y, Z)]
E[fY (Y )]

. (8)

That is, forε small, testing the equivalence of the ratios in (2a) amounts to testing (8) instead of the

null hypothesis. Unless some additional conditions hold, this will typically not be equivalent to testing

the null hypothesis. To see what these additional conditions are it is useful to rewrite (8) as follows.

For the left-hand-side one can write

E [fX,Y,Z(X, Y, Z)]
E[fY (Y )]

=
EY

[
EX,Z|Y [fX,Z|Y (X, Z|Y )f(Y )]

]
E[fY (Y )]

=
∫

EX,Z|Y =y[fX,Z|Y (X, Z|y)]w(y) dy

=
∫

HX,Z(y)w(y) dy,

wherew(y) is a weight function given byw(y) = f2
Y (y)/

∫
f2

Y (s) ds. This brings about the fact

that the ratio on the left-hand-side of (8) for smallε is proportional to a weighted average of the

conditional concentrationHX,Z(y), with weight functionw(y). In a similar fashion, for the terms on

the right-hand-side one derives

E [fX,Y (X, Y )]
E[fY (Y )]

=
∫

HX(y)w(y) dy, and
E [fY,Z(Y, Z)]

E[fY (Y )]
=

∫
HZ(y)w(y) dy.

Under the null hypothesis,Z is conditionally independent ofX givenY = y, so thatHX,Z(y) is

equal toHX(y)HZ(y), for all y. It follows that the left- and right-hand-sides of (8) coincide under

the null if and only if
∫

HX(y)HZ(y)w(y) dy −
∫

HX(y)w(y) dy
∫

HZ(y)w(y) dy = 0, or

Cov(HX(S),HZ(S)) = 0, (9)

whereS is a random variable with pdfw(y). Only under specific conditions, such as eitherHX(y)

or HZ(y) being independent ony, (9) holds under the null, and hence (2a) asε tends to zero. Also if

HX(y) andHZ(y) depend ony, (9) may hold, but this is an exception rather than the rule. Typically
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the covariance between the conditional concentrations ofX andZ givenY will not vanish, inducing

a bias in the HJ test for smallε.

Therefore, letting the bandwidth tend to zero with increasing sample size in the HJ test would

not provide a theoretical solution to the problem of over- or under-rejection caused by positive or

negative covariance of the concentration measures respectively. In simulations for a particular process

and small to moderate sample sizes one can often identify a seemingly adequate rate for bandwidths

vanishing according toεn = Cn−β , for which the size of the HJ test remains close to nominal.

However, this does not imply that using the HJ test with such a sample size dependent bandwidth is

advisable in practice. The optimal choices forC andβ may depend strongly on the data generating

process, and our results show that asymptotically the HJ test for typical processes (those with non-

vanishing covariance of concentrations ofX andY ) is inconsistent.

The fact that the conditional concentration measures ofX lX
t andYt+1 givenY lY

t affect the leading

bias term poses severe restrictions on applicability to economic and financial time series in which

conditional heteroskedasticity is usually present. Consequently there is a risk of over-rejection by the

HJ test which can not be easily eliminated either by using (G)ARCH filtering, or by using a bandwidth

that decreases with the sample size. To avoid this problem, in the next section we suggest a new test

statistic for which a consistent test is obtained asε tends to zero at the appropriate rate. The idea is

to measure the dependence betweenX andZ givenY = yi locally for eachyi. By allowing for the

bandwidth to decrease with the sample size, variations in the local (fixedY ) distributions ofX andZ

givenY are automatically taken into account by the test statistic.

4 A modified test statistic

In comparing equations (1b) and (8) it can be noticed that although (1b) holds point-wise for any

triple (x, y, z) in the support offX,Y,Z(x, y, z), (8) contains separate averages for the nominator and

the denominator of (1b), which do not respect the fact that they-values on the rhs of (1b) should be

identical. Because (1b) holds point-wise, rather than (8), the null hypothesis implies

qg ≡ E

[(
fX,Y,Z(X, Y, Z)

fY (Y )
−

fX,Y (X, Y )
fY (Y )

fY,Z(Y, Z)
fY (Y )

)
g(X, Y, Z)

]
= 0

whereg(x, y, z) is a positive weight function Under the null hypothesis the term within the round

brackets vanishes, so that the expectation is zero. Althoughqg is not positive definite, a one-sided test,

rejecting when its estimated value is too large, in practice is often found to have larger power than a
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two-sided test. In tests for serial dependence Skaug and Tjøstheim (1993) report good performance of

a closely related unconditional test statistic (their dependence measureI4 is an unconditional version

of our term in round brackets).

We have considered several possible choices of the weight functiong, being (i) g1(x, y, z) =

fY (y), (ii) g2(x, y, z) = f2
Y (y) and (iii) g3(x, y, z) = fY (y)/fX,Y (x, y). Monte Carlo simulations

using the stationary bootstrap (Politis and Romano, 1994) indicated thatg1 andg2 behave similarly

and are more stable thang3. We will focus ong2 in this paper, as its main advantage of overg1 is that

the corresponding estimator has a representation as a U-statistic, allowing the asymptotic distribution

to be derived analytically for weakly dependent data, thus eliminating the need of the computationally

more requiring bootstrap procedure. For the choiceg(x, y, z) = f2
Y (y), we refer to the corresponding

functional simply asq:

q = E [fX,Y,Z(X, Y, Z)fY (Y )− fX,Y (X, Y )fY,Z(Y, Z)] .

A natural estimator ofq based on indicator functions is:

Tn(ε) =
(2ε)−dX−2dY −dZ

n(n− 1)(n− 2)

∑
i

 ∑
k,k 6=i

∑
j,j 6=i

(
IXY Z
ik IY

ij − IXY
ik IY Z

ij

) ,

whereIW
ij = I(‖Wi −Wj‖ < ε). Note that the terms withk = j need not be excluded explicitly as

these each contribute zero to the test statistic. The test statistic can be interpreted as an average over

local BDS test statistics (see Brocket al., 1996), for the conditional distribution ofX andZ, given

Y = yi.

If we denote local density estimators of adW -variate random vectorW atWi by

f̂W (Wi) =
(2ε)−dW

n− 1

∑
j,j 6=i

IW
ij ,

the test statistic simplifies to

Tn(ε) =
(n− 1)
n(n− 2)

∑
i

(f̂X,Y,Z(Xi, Yi, Zi)f̂Y (Yi)− f̂X,Y (Xi, Yi)f̂Y,Z(Yi, Zi)).

For an appropriate sequenceεn of bandwidth values these estimators are consistent and the test statis-

tic consist of a weighted average of local contributionsf̂X,Y,Z(x, y, z)f̂Y (y) − f̂X,Y (x, y)f̂Y,Z(y, z)

which tend to zero in probability under the null hypothesis.

In Appendix A.1, using the approach proposed by Powell and Stoker (1996), we show that for

dX = dY = dZ = 1 the test is consistent if we let the bandwidth depend on the sample size as

εn = Cn−β (10)
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for any positive constantC andβ ∈ (1
4 , 1

3). In that case the test statistic is asymptotically normally

distributed in the absence of dependence between the vectorsWi. Under suitable mixing conditions

(Denker and Keller, 1983) this can be extended to a time series context provided that covariances

between the local density estimators are taken into account, giving:

Theorem 1 For a sequence of bandwidthsεn given by (10) withC > 0 and β ∈ (1
4 , 1

3) the test

statisticTn satisfies:
√

n
(Tn(εn)− q)

Sn

d−→N(0, 1).

In appendix A.1 the asymptotic normality ofTn is shown under a decreasing bandwidth, while ap-

pendix A.3 considers the autocorrelation robust estimation of the asymptotic varianceσ2 by S2
n.

4.1 Bandwidth choice

In the typical case where the local bias tends to zero at the rateε2 as in Condition 1 in Appendix A.1,

the bandwidth choice which is optimal in that it asymptotically gives the estimatorTn with the smallest

mean squared error (MSE) is given by

ε∗n = C∗n−
2
7

with

C∗ =
(

18 · 3q2

4(E[s(W )])2

) 1
7

(11)

as derived in appendix A.2.

To gain some insights into the order of magnitude ofC∗ it is helpful to calculate its value for

some processes. Here we consider the ARCH process given in (3). The optimalC-value derived in

the appendix is analytically hard to track since it involves the marginal distribution of the process.

However, we can derive an approximate optimal value ofC analytically by ignoring the deviation

from normality ofY (an assumption which is reasonable for smalla). TakingY ∼ N(0, 1) andX, Z

independent andN(0, 1 + aY 2) conditional onY , we find

q2 =
e2/aerfc(

√
2/a)

1152π2
√

a
, (12)

whereerfc(s) = 1− erf(s) and

E[s(W )] =

√
6a/π(3 + a) + (a(a− 6)− 9)e3/(2a)erfc(

√
3/(2a))

768
√

2a3/2π3/2
. (13)
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To investigate the behaviour of the bandwidth for smalla, one may use the fact that

q2 =
1

1152
√

2π3/2
+ o(a) and E[s(W )] = a2

(
1

288
√

3π2
+ o(a)

)
.

This suggests that asa tends to zero the (asymptotically) optimal bandwidth diverges at the ratea−4/7.

This is consistent with the fact that larger bandwidths are optimal for a smaller correlation between

the conditional concentrations ofX andZ givenY .

The optimal bandwidth for (G)ARCH filtered data depends on the correlation of the conditional

concentrations after filtering, which may depend strongly on the underlying data generating process.

However, the consistency of the test does not require filtering prior to testing, and it is possible to

obtain a rough indication of the optimal bandwidth for raw returns. Since the covariance between

conditional concentrations for bivariate financial time series are mainly due to ARCH/GARCH effects,

eqs (12) and (13) can be used together with an estimate of the ARCH coefficienta to obtain a rough

indication of the optimal constantC∗ for applications to unfiltered financial returns data. To provide

a feel for the order of magnitude: fora = 0.4 one findsC∗ ' 8. Note that this value is asymptotically

optimal and may lead to unrealistically large bandwidths for smalln. In applications we therefore

truncate the bandwidth by taking

εn = max(Cn−2/7, 1.5). (14)

4.2 Simulations

We use numerical simulations to investigate the behavior of the proposedTn test with the shrinking

bandwidth given by (10). As the underlying process for the simulations we choose the process (3)

considered before, a bivariate conditional heteroskedastic process with lag one dependence. The

interest in this process is stipulated by its relevance to econometrics and financial time series. The

null hypothesis{Xt} is not Granger causing{Yt} is satisfied.

Table 1 reports theTn test rejection rates (both size and power) for increasing series lengthn with

n-dependent bandwidthsεn given by (10), for a nominal size of0.05. The size computations were

based on the ARCH process (3) with coefficientsc = 1, a = 0.4. For β we used the theoretically

optimal rate of27 , and we choseC = 8.62 which empirically turned out to give fast convergence of

the size to the nominal value0.05. This C-value is close to the approximate optimal asymptotic value

C∗ ' 8 for a = 0.4 reported above.
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n 100 200 500 1 000 2 000 5 000 10 000 20 000 60 000

ε 1.50 1.50 1.50 1.20 1.00 0.76 0.62 0.51 0.37

size 0.022 0.033 0.052 0.052 0.051 0.050 0.050 0.052 0.053

power 0.073 0.155 0.411 0.661 0.900 0.998 1.000 1.000 1.000

Table 1: Observed rejection rates (size and power) of the Tn test for bivariate ARCH process (3) as a function

of the time series length n and decreasing bandwidth ε according to (14) (nominal size 0.05). Number of

realisations: 10 000 for n < 60 000, and 3 000 for n = 60 000.

To compute the power we took the same process and reversed the roles of{Xt} and{Yt}, so

that the relation tested became:{Yt} is not Granger causing{Xt}. For the power calculations the

coefficienta was reduced to0.1 to make the simulations more informative (for highera the power was

one in nearly all cases). The power of the test increases withn, in accordance with the consistency of

the test under the decreasing bandwidth procedure.

To provide some guidance for choosing criticalp-values in practice for small sample sizes, Fig-

ure 2 shows some size-size plots for smalln ranging over nominal sizes between0 and0.15.

 0

 0.025

 0.05

 0.075

 0.1

 0.125

 0.15

 0  0.025  0.05  0.075  0.1  0.125  0.15
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tu
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n=500

Figure 2: Size-size plot of Tn test for process (3) with shrinking bandwidth for time series lengths n = 100

(solid line), 200 (dashed line), 500 (long-dashed line). The number of realisations is 10 000. The dotted line

along the diagonal represents the ideal situation where the actual size and the nominal size coincide.
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Finally, we present some simulations for lagslX = lY larger than one, since these are used often

for the HJ test. In the applications presented in the next section we compare both tests for larger

values oflX andlY as well, and to motivate this we should check if the empirical size of our new test

does not exceed the nominal size for larger lags. Table 2 gives the empirical rejection rates for the

bivariate ARCH process (3), again withc = 1 anda = 0.4, under the null hypothesis (that is, testing

{Xt} Granger causes{Yt}) for lag lengthslX = lY ranging from1 to 5. The results indicate that

the rejection rate decreases withlX = lY , and hence that theTn test is progressively conservative for

increasing lag lengths, so that the risk of rejecting under the null becomes small.

lX = lY n = 1 000 n = 10 000

1 0.0517 0.0502

2 0.0391 0.0316

3 0.0318 0.0197

4 0.0243 0.0112

5 0.0187 0.0099

Table 2: Observed rejection rates (empirical size) of Tn test for bivariate ARCH process (3) as a function of

number of lags lX = lY for time series length n = 1 000 and n = 10 000 with optimal bandwidth ε = 1.2 and

ε = 0.62 respectively (nominal size 0.05, number of realisations 10 000)

5 Applications

We consider an application to daily volume and returns data for the Standard and Poor’s 500 index

in the period between January 1950 and December 1990. We deliberately have chosen this period

to roughly correspond to the period for which Hiemstra and Jones (1994) found strong evidence for

volume Granger-causing returns (1947 – 1990) for the Dow Jones index. To keep our results com-

parable with those of Hiemstra and Jones, we closely followed their procedure. That is, we adjusted

for day-of-the-week and month-of-the-year effects on returns and percentage volume changes, using

a two-step procedure in which we first adjust for effects in the mean, and subsequently in the vari-

ance. The calendar adjusted, standardized, returns and percentage volume change data were used to

estimate a linear bivariate VAR model, the residuals of which are considered in the application below.

We applied the HJ andTn test to the VAR residuals, before as well as after EGARCH(1,1) filtering

the VAR residuals of the returns data. Table 3 shows the resulting T-values for the HJ andTn test in
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both directions, forlX = lY = 1, . . . , 8 and for two different values ofε: 1.5, the value used by

Hiemstra and Jones (1994) for the Dow Jones data, and0.6, which is roughly the optimal value

(C∗ ' 0.57) we found from eqs (11)–(13) for the ARCH coefficienta, estimated from the data as

0.27.

returns⇒ volume volume⇒ returns

ε = 1.5 ε = 0.6 ε = 1.5 ε = 0.6

lX = lY HJ T2 HJ T2 HJ T2 HJ T2

before filtering

1 9.476∗∗ 9.415∗∗ 10.298∗∗ 8.850∗∗ 5.351∗∗ 5.106∗∗ 5.736∗∗ 4.893∗∗

2 10.989∗∗ 11.076∗∗ 10.616∗∗ 8.182∗∗ 6.671∗∗ 6.447∗∗ 6.818∗∗ 5.396∗∗

3 10.909∗∗ 10.662∗∗ 9.112∗∗ 6.425∗∗ 6.026∗∗ 5.683∗∗ 5.717∗∗ 3.948∗∗

4 10.758∗∗ 9.823∗∗ 7.934∗∗ 5.121∗∗ 6.029∗∗ 5.552∗∗ 4.692∗∗ 2.887∗∗

5 10.118∗∗ 8.856∗∗ 5.821∗∗ 3.540∗∗ 5.695∗∗ 5.191∗∗ 2.837∗∗ 1.234

6 9.428∗∗ 7.903∗∗ 4.391∗∗ 2.603∗∗ 5.935∗∗ 5.338∗∗ 3.314∗∗ 1.604

7 8.959∗∗ 7.4215∗∗ 3.102∗∗ 2.085∗ 5.194∗∗ 4.706∗∗ 1.327 0.248

8 8.494∗∗ 6.577∗∗ 1.649∗ 0.701 4.484∗∗ 4.085∗∗ 0.418 0.567

after EGARCH filtering

1 7.461∗∗ 7.429∗∗ 7.946∗∗ 6.781∗∗ 1.532 1.481 1.628 1.529

2 8.444∗∗ 8.600∗∗ 8.012∗∗ 6.493∗∗ 3.022∗∗ 3.091∗∗ 3.251∗∗ 2.825∗∗

3 7.537∗∗ 7.788∗∗ 6.381∗∗ 5.109∗∗ 1.894∗ 1.982∗ 2.534∗∗ 2.023∗

4 7.257∗∗ 7.198∗∗ 5.169∗∗ 3.900∗∗ 2.141∗ 2.225∗ 1.964∗ 0.989

5 6.125∗∗ 6.107∗∗ 2.686∗∗ 2.023∗ 2.095∗ 2.142∗ 1.160 0.853

6 5.582∗∗ 5.445∗∗ 2.136∗ 1.477 2.969∗∗ 2.965∗∗ 1.411 1.129

7 5.028∗∗ 4.873∗∗ 1.192 0.532 2.278∗ 2.285∗ 1.414 0.943

8 4.495∗∗ 4.249∗∗ 0.779 0.253 1.754∗ 1.725∗ 0.398 0.860

Table 3: T-ratios for the S&P500 returns and volume data. Results are shown for the HJ test and Tn for

bandwidth values of 1.5, the value used by Hiemstra and Jones (1994) and 0.6, corresponding to the optimal

bandwidth for Tn (based on an estimated ARCH parameter 0.27). T-ratios before and after EGARCH filtering

the returns are given, for lX = lY = 1, . . . , 8. The asterisks indicate significance at the 5% (*) and 1% (**)

levels.

The results obtained with both tests strongly indicate evidence for returns affecting future volume

changes, for nearly all lags and both bandwidths. Only for large values of the lagslX = lY the

evidence is somewhat weaker. Although both tests point in the same direction, when comparing the
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overall results for equal bandwidths and lagslX = lY the T-values are somewhat smaller for theTn

test than for the HJ test. As argued in the previous sections, the HJ test may be inconsistent due to a

bias which cannot be removed simply by choosing a smaller bandwidth. To investigate the possible

effects of this bias one should contrast the HJ test with our new test with an appropriately scaled

bandwidth, which we have shown to be consistent asymptotically. That is, at least for the unfiltered

data, one should actually compare the HJ test forε = 1.5 with theTn test for the adaptive bandwidth

0.6. In that case the table shows even larger differences between the T-values of the HJ test and the

Tn test.

For the other causal direction — volume changes affecting future returns — the different results

obtained for the HJ test withε = 1.5 and theTn test with ε = 0.6, for the filtered data is large

enough to make a difference for obtaining significance at the5% and1% nominal level for several

lags. Overall, the evidence for volume changes affecting future returns, although still present after

filtering for laglX = lY = 2 and arguably3, is much weaker forTn with ε = 0.6 than for the HJ test

with ε = 1.5.

In summary, our findings on the basis of the Standard and Poor’s data indicate that the strong

evidence for volume Granger causing returns obtained with the HJ test may be partly due to the bias

we identified in the HJ test statistic. If the test is performed with the consistentTn statistic with a near-

optimal bandwidth, for which theory and simulations indicate that the actual size is close to nominal,

the evidence for volume Granger causing returns tends to become weaker. Finally, since the T-values

can be seen to decrease for smallerε in most cases, the results also suggest that, when in doubt, it

is better to use a smaller bandwidth. Intuitively this is related to the fact that it reduces the bias and

increases the variance of the test statistic relative to the bias, so that the risk of over-rejection becomes

smaller.

6 Concluding Remarks

Motivated by the fact that the HJ test can over-reject, as demonstrated in simulations, our aim was to

construct a new test for Granger non-causality. By analyzing the HJ test analytically we found it to

be biased even if the bandwidth tends to zero. Based on the analytic results, which indicated that the

bias is caused by covariances in conditional concentrations, we proposed a new test statisticTn that

automatically takes the variation in concentrations into account.
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By symmetrizing the new test statistic, we expressed it as a U-statistic for which we developed

asymptotic theory under bandwidth values that tend to zero with the sample size at appropriate rates.

The theory allowed us to derive the optimal rate as well as the asymptotically optimal multiplicative

factor for the bandwidth. For ARCH type processes the optimal bandwidth can be expressed in terms

of the ARCH coefficient, which is useful for getting an indication of the order of bandwidth magnitude

to be used in practice for financial returns data. Simulations for the new test confirmed that the size

converges to the nominal size fast as the sample size increases. Additional simulations indicated that

the test becomes conservative for larger lags taken into account by the test.

In an application to relative volume changes and returns for historic Standard and Poor’s index

data we found that some of the strong evidence for relative volume changes Granger causing returns

obtained with the HJ test may be related to its bias, since use of the new test, which is shown to be

consistent, strongly weakens the evidence against the null hypothesis. This result suggests that some

of the rejections of the Granger non-causality hypothesis reported in the literature may be spurious.
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A Appendix

A.1 Asymptotic distribution of Tn

The test statisticTn can be written in terms of a U-statistic by symmetrization with respect to the three

different indices. This gives

Tn(ε) =
1

n(n− 1)(n− 2)

∑
i6=j 6=k 6=i

K(Wi,Wj ,Wk)

with Wi = (X lX
i , Y lY

i , Zi), i = 1, . . . , n and

K(Wi,Wj ,Wk) =
(2ε)−dX−2dY −dZ

6


(
IXY Z
ik IY

ij − IXY
ik IY Z

ij

)
+

(
IXY Z
ij IY

ik − IXY
ij IY Z

ik

)
+(

IXY Z
jk IY

ji − IXY
jk IY Z

ji

)
+

(
IXY Z
ji IY

jk − IXY
ji IY Z

jk

)
+(

IXY Z
ki IY

kj − IXY
ki IY Z

kj

)
+

(
IXY Z
kj IY

ki − IXY
kj IY Z

ki

)


(15)

For a given bandwidthε the test statisticTn is a third order U-statistic. To develop asymptotic distri-

bution theory under a shrinking bandwidthεn we closely follow the methodology proposed by Powell

and Stoker (1996). Although their main goal was to derive MSE (mean squared error) optimal band-

widths for point estimators, it turns out that similar considerations can be used to derive rates for the

bandwidth that provide consistency and asymptotic normality ofTn. We first treat the analytically

simplest case of a random sample{Wi}n
i=1, and deal with dependence later.

BecauseTn is a U-statistic, its finite sample variance is given by (see e.g. Serfling, 1980):

Var (Tn) =
9
n

ζ1 +
18
n2

ζ2 +
6
n3

ζ3 + o
(

ζ1

n
+

ζ2

n2
+

ζ3

n3

)
,

where

ζ1 = Cov(K(W1,W2,W3),K(W1,W
′
2,W

′
3)) = Var(K1(W1))

ζ2 = Cov(K(W1,W2,W3),K(W1,W2,W
′
3) = Var(K2(W1,W2))

ζ3 = Var(K(W1,W2,W3)),

with W1,W2,W3,W
′
2 and W ′

3 all independent and identically distributed according toW . The

functionsK1(w1) andK2(w1, w2) are given byK1(w1) = E[K(w1,W2,W3)] andK2(w1, w2) =

E[K(w1, w2,W3)].

Following Powell and Stoker (1996), definer(w, ε) = K1(w, ε) andr0(w) = limε→0 r(w, ε). It
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can be verified that

r0(w) = 2
3fX,Y,Z(x, y, z)fY (y) + 1

3f2
Y (y)HX,Z(y)− 1

3fX,Y (x, y)fY,Z(y, z)

−1
3fY,Z(y, z)fY (y)

∫
fX,Y (x′, y)fX,Y,Z(x′, y, z)dx′

−1
3fX,Y (x, y)fY (y)

∫
fY,Z(y, z′)fX,Y,Z(x, y, z′)dz′.

For example, the fourth term on the right-hand-side follows from:

(2ε)−dX−2dY −dZ EWk
[IXY

jk IY Z
ji ] =

∫
fX,Y (xk, yk)δxj ,yj (xk, yk)IY Z

ij dxk dyk(2ε)−dY −dZ + o(1)

= fX,Y (xj , yj)IY Z
ij (2ε)−dY −dZ + o(1),

whereδv0(v) stands for the kronecker delta function, which can be thought of as the limiting pdf of a

random variable with all mass at the pointv0, and

(2ε)−dY −dZ EWj [fX,Y (xj , yj)IY Z
ij ] =

∫
fX,Y (xj , yj)δyj ,zj (yi, zi)fX,Y,Z(xj , yj , zj) dxj dyj dzj + o(1)

=
∫

fX,Y (xj , yi)fX,Y,Z(xj , yi, zi)dxj + o(1).

Adapting from Powell and Stoker (1996), we assume the following three conditions:

Condition 1: (rate of convergence of pointwise bias ofr(wi, ε)). The functionsr(wi, ε) satisfy

r(wi, ε)− r0(wi) = s(wi)εα + s∗(wi, ε),

for someα > 0, and the remainder terms∗(·) satisfiesE‖s∗(Wi, h)‖2 = o(h2α).

For our kernel the bias in each of the contributions to the kernel converges to zero at rateα = 2.

Therefore Condition 1 holds withα = 2. In fact it might be possible to replace the local bias Condition

1 by a global version, involvingE[r(Wi, ε) − r0(Wi)], which may tend to zero faster than the local

bias. However, for our purposes the local assumption withα = 2 suffices.

Condition 2: (series expansion for second moment ofK2(W1,W2)). The functionK2(w1, w2)

satisfies

E
[
(K2(W1,W2))2

]
= q2ε

−γ + q∗2(ε)

for someγ > 0, where the remainder termq∗2 satisfies(q∗2(ε))
2 = o(ε−γ).

This is a weaker version of Powell and Stoker’s (1996) Assumption 2, which required a series

expansion locally. For our purposes the weaker assumption suffices, sinceTn is a global functional of

the distribution ofW .

Condition 3: (series expansion for second moment ofK(W1,W2,W3)). The functionK(w1, w2, w3)

satisfies

E
[
(K(W1,W2,W3))2

]
= q3ε

−δ + q∗3(ε)
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for someδ > 0, where the remainder termq∗3 satisfies(q∗3(ε))
2 = o(ε−δ).

For our kernel Condition 3 is satisfied withδ = dX +2dY +dZ , since none of the contributions to

the kernel have a variance increasing faster inε than at the rateεdX+2dY +dZ . Finding an appropriate

value forγ in Condition 2 is somewhat more involved. We examine the rate at which each of the

contributions to the kernel function depend onε. For example, for the term(2ε)−dX−2dY −dZ IXY Z
ik IY

ij

we find EWk
[(2ε)−dX−2dY −dZ IXY Z

ik IY
ij ] = (2ε)−dY fX,Y,Z(Xi, Yi, Zi)IY

ij + o(1) from which one

obtains

E

[(
(2ε)−dY EWk

[
IXY Z
ik IY

ij

])2
]

= (2ε)−2dY E
[
f2

X,Y,Z(Xi, Yi, Zi)IY
ij + o(εdY )

]
= (2ε)−dY E

[
f2

X,Y,Z(Xi, Yi, Zi)fY (Yi)
]

+ o(ε−dY ).

Proceeding in this way for each of the terms in the kernel, one finds that the dominant contributions

are given by the terms(2ε)−dX−2dY −dZ IXY Z
ij IY

ik and(2ε)−dX−2dY −dZ IXY Z
ji IY

jk. For the first of these

one findsEWk
[(2ε)−dX−2dY −dZ IXY Z

ij IY
ik] = (2ε)−dX−dY −dZ IXY Z

ij fY (Yi) + o(1), giving

E

[(
(2ε)−dX−dY −dZ EWk

[
IXY Z
ij IY

ik

])2
]

= (2ε)−2dX−2dY −2dZ E
[
IXY Z
ij f2

Y (Yi)
]

+ o(ε−dX−dY −dZ )

= (2ε)−dX−dY −dZ E
[
fX,Y,Z(Xi, Yi, Zi)f2

Y (Yi)
]

+o(ε−dX−dY −dZ ).

All other terms increase with vanishingε slower, which demonstrates that Condition 2 holds with

γ = dX + dY + dZ and a constantq2 given byq2 = 4
36 × 2−dX−dY −dZ E[fX,Y,Z(Xi, Yi, Zi)f2

Y (Yi)].

The factor4 enters due to the fact that there are two terms,EWk
[(2ε)−dX−2dY −dZ IXY Z

ij IY
ik] and

EWk
[(2ε)−dX−2dY −dZ IXY Z

ij IY
jk], which are asymptotically perfectly correlated ifε tends to zero suf-

ficiently slowly with the sample size.

It follows from Condition 1 that

Var [r(Wi, ε)] = Var [r0(Wi)] + C0ε
α + o(εα),

whereC0 = 2Cov [r0(Wi), s(Wi)]. We can thus express the mean squared error ofTn as

MSE[Tn] = (E[s(Wi)])
2 ε2α +

9
n

C0ε
α +

9
n

Var [r0(Wi)] +
18
n2

q2ε
−γ +

6
n3

q3ε
−δ. (16)

Tn is asymptoticallyN(0, σ2/n) distributed withσ2 = 9Var[r0(Wi)], provided that each of theε-

dependent terms in the MSE ofTn areo(n−1). If we let ε ∼ n−β, this implies the following four

conditions should hold:

−2αβ < −1, −αβ < 0, γβ < 1, δβ < 2.
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The first two of these implyβ > 1
2α = 1

4 andβ > 0, respectively, while the last two implyβ < 1
γ =

1
dX+dY +dZ

andβ < 2
δ = 2

dX+2dY +dZ
. Because 1

dX+dY +dZ
< 2

dX+2dY +dZ
, the conditions can be

summarized as:14 < β < 1
dX+dY +dZ

. Therefore, for the casedX = dY = dZ = 1, and a sequence of

bandwidthsεn ∼ n−β for someβ ∈ (1
4 , 1

3), the test statistic is asymptotically normal:

√
n

Tn(εn)− q

σ

d−→N(0, 1)

with σ2 = 9Var[r0(Wi)].

Note that it might also be possible to derive appropriate values for the rateβ for dX +dY +dZ > 3,

but only provided that the overall biasE[s(Wi)] tends to zero faster thanε2.

A.2 Optimal Bandwidth

The MSE optimal bandwidth balances the dominating squared bias and variance terms (the first and

fourth term on the right-hand-side of Eq. (16)), the other bandwidth dependent terms being of smaller

order. The optimal bandwidth which asymptotically minimizes the sum of these terms is given by

ε∗ =
(

18 · 3q2

4(E[s(W )])2

) 1
7

n−
2
7 . (17)

To guide the choice of the multiplicative factorC in ε = Cn−
2
7 , it is illustrative to examine the

optimal choiceC∗ =
(

18·3q2

4(E[s(W )])2

) 1
7

in specific cases. Above an expression forq2 was found already

in terms of the joint density ofW . A similar expression forE[s(Wi)] can be found by using local

taylor expansions of the density ofw, locally nearwk. As each of the 6 terms inTn have the same

expectation, to determine the bias we consider the first of these only:

(2ε)−dX−2dY −dZ (IXY Z
ik IY

ij − IXY
ik IY Z

ij ).

Taking averages overj andk for a fixed vectorwi leads to an expression involving plug-in estimators

of local densities

(2ε)−dX−2dY −dZ

(n− 1)(n− 2)

∑
j 6=i

∑
k 6=i,j

(IXY Z
ik IY

ij−IXY
ik IY Z

ij ) = f̂X,Y,Z(xi, yi, zi)f̂Y (yi)−f̂X,Y (xi, yi)f̂Y,Z(yi, zi).

An expression for the local bias can be obtained by examining the bias of each of the estimated

densities in this expression.

For a general densityfV (v) of a random vectorV = (V 1, . . . , V m), of which a sample{Vi}n
i=1

is available, the bias of̂f(ṽ) = (2ε)m 1
n

∑n
i=1 I(‖Vi− ṽ‖ ≤ ε) locally atṽ can be found from a taylor
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expansion of the density offV (v) aroundṽ:

f(v)− f(ṽ) =
m∑

i=1

ai(ṽ)(vi − ṽi) +
1
2

m∑
i=1

m∑
j=1

bij(ṽ)(vi − ṽi)(vj − ṽj) + O(‖v − ṽ‖3),

with ai(ṽ) = ∂
∂vi

∣∣
v=ṽ

f(v) andbij(ṽ) = ∂2

∂vi∂vj |v=ṽf(v). The local bias of̂f(ṽ) is given by

E[f̂(ṽ)]− f(ṽ) =
1
2
(2ε)−m

m∑
i=1

m∑
j=1

∫ ṽ1+ε

ṽ1−ε
· · ·

∫ ṽm+ε

ṽm−ε
bij(ṽ)(vi − ṽi)(vj − ṽj) dv1 . . .dvm + o(ε2)

=
1
2
(2ε)−1

m∑
i=1

∫ ṽi+ε

ṽi−ε
bii(ṽ)(vi − ṽi)2dvi + o(ε2)

= (2ε)−1 1
3
ε3

m∑
i=1

bii(ṽ) + o(ε2)

=
1
6
ε2∇2f(ṽ) + o(ε2).

Up to leading order inε, the bias of products of estimated densities follows from identities such

asE[f̂V f̂W ] = E[(fV + (f̂V − fV ))(fW + (f̂W − fW ))] = fV fW + fV E[f̂W − fW ] + fW E[f̂V −

fV ] + o(ε2). In this way the local bias of̂fX,Y,Z(xi, yi, zi)f̂Y (yi) − f̂X,Y (xi, yi)f̂Y,Z(yi, zi) can be

written as

r(wi, ε)− r0(wi) = 1
6ε2

[
fY (yi)∇2fX,Y,Z(xi, yi, zi)− fX,Y (xi, yi)∇2fY,Z(yi, zi)

+fX,Y,Z(xi, yi, zi)∇2fY (yi)− fY,Z(yi, zi)∇2fX,Y (xi, yi)
]
+ o(ε2),

(18)

which shows that Condition 1 holds forα = 2 ands(w) equal to one6th of the term between square

brackets. Suppressing the subscripts for convenience, one may write

s(w) = 1
6f(y)[∇2

xf(x, y, z) +∇2
yf(x, y, z) +∇2

zf(x, y, z)]

−1
6f(x, y)[∇2

yf(y, z) +∇2
zf(y, z)]

−1
6f(y, z)[∇2

xf(x, y) +∇2
yf(x, y)]

+1
6f(x, y, z)∇2

yf(y),

where∇2
x =

∑dX
j=1

∂2

∂xj2 and∇2
y and∇2

z are defined analogously. Upon taking expectations with

respect toW one obtains the coefficient of the leading bias termE[s(W )], which enters expression

(17) for the optimal bandwidth.

Under the null hypothesis the leading bias term can be simplified by rewriting it in terms of
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conditional densities:

s(w) = 1
6f(y)f(x, z)∇2

yf(y|x, z)− 1
6f(x, y)f(z)∇2

yf(y|z)

−1
6f(y, z)f(x)∇2

yf(y|x) + 1
6f(x, y, z)∇2

yf(y)

+1
6f(y)f(y, z)∇2

x[f(x|y, z)− f(x|y)]

+1
6f(x, y)f(y)∇2

z[f(z|x, y)− f(z|y)].

The terms within square brackets are zero if the null hypothesis holds. The remaining terms can be

expressed as:

s(w) = 1
6∇

2
y[f(y)f(x, y, z)− f(x, y)f(y, z)]

−1
3∇yf(y) · ∇yf(x, y, z) + 1

3∇yf(x, y) · ∇yf(y, z),

where∇y is the gradient operator, and the dot denotes the usual vector inner product. Again the term

in square brackets vanishes under the null, and the remaining terms reduce to

s(w) =
1
3
f2(y)∇yf(x|y) · ∇yf(z|y).

Finally, the following expression forE[s(W )] under the null is obtained by taking expectations of this

local expression with respect to the random vectorW :

E[s(W )] =
1
3
EY

[
f2

Y (Y )∇HX(Y ) · ∇HZ(Y )
]
.

A.3 Dependence

According to Denker and Keller (1983), for weakly dependent dataTn is still asymptoticallyN(q, σ2

n )

distributed, provided that the covariance among ther0(Wi) is taken into account in the asymptotic

varianceσ2:

σ2 = 9

Var(r0(W1)) + 2
∑
k≥2

Cov(r0(W1), r0(W1+k))

 .

If we estimater0(Wi) as

r̂0(Wi) =
(2ε)−dX−2dY −dZ

(n− 1)(n− 2)

∑
j,j 6=i

∑
k,k 6=i

K(Wi,Wj ,Wk),

an autocorrelation consistent estimator forσ2 is given by (Newey and West, 1987):

S2
n =

K∑
k=1

Rkωk,
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whereRk = 1
n−k

∑n−k
i=1 (r̂0(Wi) − Tn)(r̂0(Wi+k) − Tn) is the sample autocovariance function of

r̂0(Wi), andωk a decreasing weight function as in Hiemstra and Jones (1994). It follows that

√
n

(Tn − q)
Sn

d−→N(0, 1),

which proves Theorem 1.

AlthoughTn is a third order U-statistic, bothTn and the asymptotic varianceS2
n can be determined

in O(n2) computational time. For eachi, the calculation of̂fW (Wi) and theIW
ij isO(n). A second

O(n) calculation then provideŝr0(Wi) through

r̂0(Wi) = 1
3

(
f̂X,Y,Z(Xi, Yi, Zi)f̂Y (Yi)− f̂X,Y (Xi, Yi)f̂Y,Z(Yi, Zi)

)
+ 1

3n

∑
j

(
f̂X,Y,Z(Xj , Yj , Zj)IY

ij (2ε)−dY + IXY Z
ij f̂Y (Yj)(2ε)−dX−dY −dZ

−f̂X,Y (Xj , Yj)IY Z
ij (2ε)−dY −dZ − IXY

ij f̂Y,Z(Yj , Zj)(2ε)−dX−dY

)
,

a result which follows from straightforward calculation from the definition ofr̂0(Wi). C-code can be

obtained from the authors upon request.

25



References

Abhyankar, A. (1998). Linear and non-linear granger causality: Evidence from the U.K. stock index

futures market.Journal of Futures Markets, 18,519–540.

Baek, E. and Brock, W. (1992). A general test for granger causality: Bivariate model. Technical

Report. Iowa State University and University of Wisconsin, Madison.

Bell, D., Kay, J. and Malley, J. (1996). A non-parametric approach to non-linear causality testing.

Economics Letters, 51,7–18.

Brock, W. A., Dechert, W. D., Scheinkman, J. A. and B, LeBaron (1996). A test for independence

based on the correlation dimension.Econometrics Review, 15,number 3, 197–235.

Brooks, C. (1998). Predicting stock index volatility: Can market volume help?Journal of Forecasting,

17,59–80.

Chen, A.-S. and Lin, J. W. (2004). Cointegration and detectable linear and nonlinear causality:

analysis using the London Metal Exchange lead contract.Applied Economics, 36,1157–1167.

Ciner, C. (2001). Energy shocks and financial markets: Nonlinear linkages.Studies in Nonlinear

Dynamics and Econometrics, 5, number 3, 203–212.

Denker, M. and Keller, G. (1983). OnU-statistics and v. Mises’ statistics for weakly dependent

processes.Zeitschrift f̈ur Wahrscheinlichkeitstheorie und verwandte Gebiete, 64,505–522.

Diks, C. and Panchenko, V. (2005). A note on the Hiemstra-Jones test for Granger non-causality.

Studies in Nonlinear Dynamics and Econometrics; forthcoming.

Engle, Robert (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of

U.K. inflation. Econometrica, 50,987–1008.

Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral

methods.Econometrica, 37,424–438.

Hiemstra, C. and Jones, J. D. (1994). Testing for linear and nonlinear Granger causality in the stock

price-volume relation.Journal of Finance, 49,number 5, 1639–1664.

26



Ma, Y. and Kanas, A. (2000). Testing for a nonlinear relationship among fundamentals and the

exchange rates in the erm.Journal of International Money and Finance, 19,135–152.

Newey, W. and West, K. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrela-

tion consistent covariance matrix.Econometrica, 55,703–708.

Okunev, J., Wilson, P. and Zurbruegg, R. (2000). The causal relationship between real estate and

stock markets.Journal of Real Estate Finance and Economics, 21,number 3, 251–261.

Okunev, J., Wilson, P. and Zurbruegg, R. (2002). Relationships between Australian real estate and

stock market prices - a case of market inefficiency.Journal of Forecasting, 21,181–192.

Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap.Journal of the American Statistical

Association, 89,1303–1313.

Pompe, B. (1993). Measuring statistical dependences in time series.Journal of Statistical Physics,

73,587–610.

Powell, J. L. and Stoker, T. M. (1996). Optimal bandwidth choice for density-weighted averages.

Journal of Econometrics, 75,219–316.

Serfling, R. J. (1980).Approximation Theorems of Mathematical Statistics. Wiley, New York.

Silvapulla, P. and Moosa, I. A. (1999). The relationship between spot and futures prices: Evidence

from the crude oil market.Journal of Futures Markets, 19,157–193.

Skaug, H. J. and Tjøstheim, D. (1993). Nonparametric tests of serial independence. InDevelopments

in time series analysis(ed. T. Subba Rao), chapter 15. Chapman and Hall, London.

Su, L. and White, H. (2003). A nonparametric Hellinger metric test for conditional independence.

Technical Report. Department of Economics, UCSD.

27


